• 제목/요약/키워드: mass configuration

검색결과 397건 처리시간 0.022초

태국칡(Pueraria mirifica)으로부터 norsesquiterpene의 분리 및 동정 (Norsesquiterpenes from the Roots of White Kwao Krua (Pueraria mirifica))

  • 권정화;조진경;박희정;허규원;방면호;한민우;오창환;고성권;조수열;최갑용;김진호;백남인
    • Journal of Applied Biological Chemistry
    • /
    • 제57권4호
    • /
    • pp.347-352
    • /
    • 2014
  • Pueraria mirifica 뿌리를 실온에서 70% EtOH 수용액으로 추출하고 이 추출물을 EtOAc 분획, n-BuOH 분획, $H_2O$ 분획으로 나누었다. EtOAc 분획에 대하여 silica gel, octadecyl silica, 및 Sephadex LH-20 c.c.를 반복 실시하여 4종의 화합물을 분리, 정제하였다. Nuclear magnetic resonance, infrare, 및 mass spectrometry의 spectroscopic data를 해석하여, 화합물 1-4를 각각 megastigm-5-en-3,9-diol, linarionoside B, 3,5,6,9-tetrahydroxy-megastigm-7-ene 및 3,4,9-trihydroxymegastigma-5,7-diene으로 구조를 결정하였다. 화합물 1-4 모두 P. mirifica에서는 이번에 처음으로 분리된 화합물이다.

장기표면의 내외봉한관과 봉한소체의 형태학적 관찰 (The Morphology Study of Organ Surface BongHan Ducts and Corpuscle)

  • 안성훈;김민수;이상훈;권오상;김재효;소광섭;손인철
    • Korean Journal of Acupuncture
    • /
    • 제26권1호
    • /
    • pp.79-84
    • /
    • 2009
  • Objective : In 1960's Bonghan Kim's team found BongHan(BH) ducts which were presumed as acupuncture meridians and BH corpuscles. They asserted Bonghan theory and SanAl theory which was involved in cell division and cell restoration. However, many other experiments which had been operated to demonstrate and find the existence of BH ducts had failed because of the secret of blue stain drugs. During the last several years, BongHan theory has been revived through experimental researches to find the anatomical structures of BH ducts and corpuscles by Soh's Biomedical Physics Lab. Soh's research team used the staining with Janus Green B, Alcian blue, nanoparticles and Acridine Orange. We used DAPI staining to find the existence of BH ducts and the corpuscles and to observe nuclear arrangement. Methods : We used japan white rabbits as experimental animals. BH ducts and corpuscles were stained with DAPI. The nucleus configuration in BH ducts stained with DAPI were observed with microscope. Results : In this study, we found thread like structures in silver white color distinguished from the blood vessels, nerves and lymph vessels. These thread like vessels in the linear duct shape were connected to same colored mass in the ball shape. Thread like structures we found could be separated easily from the surrounding other organ mass. The nuclei of the thread like structure in DAPI staining, are about 10${\sim}$20${\mu}m$ length, in rod shape and linear arrangement. Conclusion : We concluded that the thread like structure we found was same vessel reported by Soh's research team, BongHan ducts and corpuscle.

  • PDF

AW CAM의 광도곡선 분석 (THE LIGHT CURVE ANALYSIS OF AW CAM)

  • 김천휘;한원용
    • Journal of Astronomy and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.21-29
    • /
    • 1995
  • $\beta$ Lyrae형 식쌍성 AW Cam을 UBV 세파장 영역에서 광전 관측하여 얻은 UBV 광도곡선을 Wilson and Devinney 쌍성 모델의 2가지 mode( mode 2와 mode 5)로 분석하였다. 이는 Russo and Milano (1983)가 산출한 측광 질량비(q=0.21)와 Mammano et al. (1967)의 분광질량비(q=0.43)가 일치하지 않는 모순-AW Cam 계의 남아 있는 문제인-올 해결하기 위한 것이다. Mode 2로 구한 측광학적 해가 mode 5로 구한 해보다 관측된 광도곡선을 더 잘 반영하는 것으로 계산되었다. 이는AW Cam이 정상준분리형계가 아나라 분리형 쌍성계임을 제시하는 것으로 해석될 수 있다. 또한 산출한 질량비 (q=0.43)로 계산한 AW Cam계의 삼차원 로쉬 모형을 보면 가벼운 반성은 안쪽 로쉬 한계면에 잘 들어 있는 반연 더 무거운 주성이 로쉬 한계면에 거의 접촉하고 있다. 로쉬 기하, 공전주기의 일정성, 그리고 다른 측광학적 증거들로 부터 AW Cam은 Giuricin and Mardrossian (1981)이 제안한 ‘접촉이 깨진 상태’에 있는 진화된 분리형 쌍성계가 아니라, ‘접촉 상태’로 가고 있는case A 진화 상 태에 있는 덜 진화된 분리형 쌍성계로 잠정적으로 결론짓는다

  • PDF

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

결빙 증식 최소화를 위한 다중 익형 형상 최적설계 (Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion)

  • 강민제;이혁진;조현승;명노신;이학진
    • 한국항공우주학회지
    • /
    • 제50권7호
    • /
    • pp.445-454
    • /
    • 2022
  • 항공기가 빙점 이하의 습도가 높은 구름대를 지날 때 액적이 항공기와 충돌하면 날개, 동체 등 항공기 구성품에 결빙이 발생한다. 특히 항공기의 날개에 결빙이 증식되면 공력 성능의 저하와 비행 안정성의 감소 등의 치명적인 안전 문제를 초래할 수 있다. 본 연구에서는 항공기 날개에 적용되는 고양력 장치인 다중 익형의 결빙 증식량이 최소가 되도록 형상 최적설계를 수행하였다. 3차원 Reynolds-Averaged Navier-Stokes 지배 방정식을 이용하여 공력해석을 수행하였고, 다물리 전산해석을 통해 결빙의 형상 및 증식량을 예측하였다. 최적설계의 목적함수는 결빙 증식량 최소화로 설정하였고, 설계변수는 Slat과 Flap의 전개 각도와 위치를 정의하는 형상 변수 6개를 선정하였다. 설계 과정에서 목적함수의 평가는 크리깅 근사모델을 사용하여 대체하였고 유전자 알고리즘을 적용하여 최적 형상을 도출하였다. 최적화를 수행한 결과, Slat과 Flap에 최적의 전개 각도와 위치를 적용하였을 때 결빙 증식량이 약 8% 감소하였다.

재료이용율 향상을 위한 피스톤 크라운 성형공정 연구 (Study on forming Process of Piston Crown Using Near Net Shaping Technology)

  • 최호준;최석우;윤덕재;정한수;최익준;백동규;최성규;박용복;임성주
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.197-198
    • /
    • 2008
  • The forging process produces complicated and designed components in a die at high productivity for mass production and minimizes the machining amount for favorable material utilization; the forging products used at highly stressed sections are well accepted at a wide range of industry such as automobile, aerospace, electric appliance and et cetera. Accordingly, recent R&D activities have been emphasized on improvement of forging die-life and near net shaping technology for cost effectiveness and better performance. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products. It is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; ${\phi}$ 6.0 mm and ${\phi}$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. In addition for forming experiment of piston grown air drop hammer with a capacity of 16 ton was used. The experiment with piston crown was carried out to show the formability and void closing status. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process. Also forging defects through forming process for piston crown was improved using the experiment results and FE analysis. Consequently this paper deals with the effect of radial parameters in cogging process on a void closure far large forged products and formability of piston crown.

  • PDF

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

열/화학적 에너지 평형을 고려한 통합 연료 개질 시스템의 수치적 연구 (Numerical Analysis of Integrated Fuel Processing System Considering Thermo-Chemical Energy Balance)

  • 노정훈;정혜미;정운호;윤왕래;엄석기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • This paper focuses on a systematic configuration of steam reforming fuel processor, particularly designed for small and medium sized hydrogen production application. In a typical integration of the fuel processor, there exist significant temperature gradients over the entire system which has negative effect on both catalyst life-time and system performance. Also, the volumetric inefficiency should be avoided to obtain the possible compactness for the commercial purpose. In the present work, the computational analysis will be performed to gain the fundamental insight on the transport phenomena and chemical reactions in the reformer consisting of preheating, steam reforming (SR), and water gas shift (WGS) reaction beds in the flow direction. Also, the fuel processing system includes a top-fired burner providing necessary thermal energy for endothermic catalytic reactor. A fully two-dimensional numerical modeling for a integrated fuel processing system is introduced for in-depth analysis of the heat and mass transport phenomena based on surface kinetics and catalytic process. In the model, water gas shift reaction and decomposition reaction were assumed to be at equilibrium. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Finally, the case study was done by considering the key parameters, i.e. steam to carbon (S/C) ratio and temperature. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced compact fuel processors research.

  • PDF

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Improvement in Water Resistance of Desulfurized Gypsum by Novel Modification of Silicone Oil Paraffin Composite Emulsion-based Waterproofing Agent

  • Cao, Jing-Yu;Li, Jin-Peng;Jiang, Ya-Mei;Wang, Su-Lei;Ding, Yi;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.558-565
    • /
    • 2019
  • In this study, dimethyl silicone oil and liquid paraffin were combined and subsequently emulsified; the resulting mixture was innovatively incorporated into desulfurized gypsum to resolve its drawback of a poor water resistance. The waterproof mechanism of the composite emulsion and liquid paraffin emulsion with mass fractions of 1%, 2%, 3%, and 4% were investigated. The effect of the desulfurized gypsum on the waterproof performance and basic mechanical properties were also investigated. The configuration of the composite waterproofing agent was characterized by FTIR and 1HNMR. The results showed that, compared with the traditional liquid paraffin emulsion-based waterproofing agent, the softening coefficient of the silicone oil paraffin composite emulsion-based water-repellent agent was increased by 60% and attained a value of 0.89. Combined with the waterproof mechanism and microscope morphology analysis of gypsum hydration products, the improvement in the water resistance of water resistance was primarily attributed to the formation of a silicone hydrophobic membrane between the crystals of the gypsum block; this ensured that water could not penetrate the crystal.