• Title/Summary/Keyword: mass concrete

Search Result 880, Processing Time 0.042 seconds

A Suggestion on Thermal Distributed Function for Thermal Stress Analysis in Mass Concrete (매스콘크리트 온도응력해석을 위한 온도분포함수 제안)

  • Kim Hyeon Kyeom;Kim Seung Ik;Han Jae Ho;Lee Chang Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.136-139
    • /
    • 2004
  • The domestic concrete standard specification(l999) reports roughly about heat transfer analysis and thermal stress analysis for mass concrete. Engineers cannot but choice after all numerical method such FEM, FDM to escape review. It seems to us that the specification is room for reconsideration because above methods are vary expensive and without popularity. This study suggests thermal distributed function in mass concrete. The function consists of two independent variables, curing time and depth. It's results have been tested a sensitivity for unit cement content, form condition, curing condition, and shape(depth, width). Results of the function are made a comparison with analytical values of MIDAS/CIVIL and a few measurement values. The researchers could meet with coherent and good results for variable cases.

  • PDF

The Erosion of Reinforced Concrete Walls by the Flow of Rainwater

  • Hadja, Kawthar;Kharchi, Fattoum
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.151-159
    • /
    • 2017
  • The action of rainwater on reinforced concrete walls has led to an erosion phenomenon. The erosion is very apparent when the walls are inclined. This phenomenon is studied on a real site characterized by different architectural forms. The site dates back to the seventies; it was designed by the architect, modeler of concrete, Oscar Nie Meyer. On this site, the erosion has damaged the cover of the reinforcements and reduced its depth. In this research work, a method of quantification of the erosion is developed. Using this method, the amount of mass loss by erosion was measured on imprints taken from the site. The results are expressed by the rate of mass loss by erosion; they are associated to the height and the inclination of the walls. Moreover, laboratory analysis was carried out on samples taken from the site. From this study, it is recommended to consider the erosion, in any building code, to determine the cover thickness.

A Fundamental Test of Temperature Crack Reduction Method Application by Setting Time Control of Large-Scaled Mat Foundation Mass Concrete (초대형 매트기초 매스 콘크리트의 응결시간조정에 의한 온도균열저감 공법적용의 기초적 실험)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Constructing large-scale mat foundation mass concrete is increasing for the stability of building structure, because a lot of high rise building are being built in order to make full use of limited space. However, It is of increasing concerns that because limited placing equipments, available job-site and systems for mass concete placement in construction field do not allow to place great quantity of concrete at the same time in large scale mat foundation, consistency between placement lift can not be secured. And also, it is likely to crack due to stress caused by the difference of hydration heat generation time. To find out the solution against above problems, this study is to reconfirm the performance of normal concrete designed by mix proportion and super retarding concrete. The Fundamental test shows what happens if low heat proportioning and control method of setting time are applied at the job-site of newly constructed high rise building. The test result show that slump flow of concrete has been somewhat increased as the target retarding time gets longer, while the air content has been slightly decreased but this is no great difference from normal concrete. The setting time shows to be retarded as target retarding time gets longer, the range of retarding time increases. It is necessary to increase the amount of mix of super retarding agent in the proportion ration by setting curing temperature high since outdoor curing is about 6 hours faster than standard curing, which means the temperature of the concrete will be higher than the temperature of the surrounding environment, due to its high hydration heat when applying in a construction site. The compressive strength of super retarding concrete appears to be lower than normal concrete due to the retarding action in the early stage. However, as the time goes by, the compressive strength gets higher, and by the 28th day the strength becomes the same or higher than normal concrete.

Quality Inspection for Cast-In-Place Concrete with the Device to Record Curing Temperature (양생온도 이력 기록장치를 이용한 현장타설 콘크리트의 품질검사)

  • Cho, Yeong-Kweon;Kim, Kwan-Ho;Kim, Meyong-Won;Lee, Jun-Gu;Yoo, Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.351-354
    • /
    • 2005
  • Quality of concrete required to achieve the desired levels of strength and durability depend on the effectiveness of the curing method. During cold weather, the concrete at the time of placement should be taken to prevent damage to concrete due to freezing. Since the cement-water reaction is exothermic by nature, the temperature within mass concrete can be quite high. The temperature control for massive sections should be taken more careful than for shallow sections. However, in the constructing hydraulic structures, the curing temperature control for concrete had been very difficult to be taken in a proper way because the conditions constructing them are poor and contractors are small enterprises. For several. reasons including above, Rural Research Institute has developed a device and program for recording curing temperature history in cold weather concrete and mass. As there are two major advantages of the device, namely cheapness and availability, this program and device has been recommended to the use of curing temperature control in cold weather concrete and mass.

  • PDF

Construction Considering the Difference of Setting Time of Super Retarding Agent for Reduction of Hydration Heat of Footing Mass Concrete (기초 매스콘크리트의 수화열 저감을 위한 초지연제 응결시간차 공법의 현장 적용)

  • 황인성;배정렬;윤석명;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.95-98
    • /
    • 2003
  • This paper presents the results of field experiment to apply the difference of setting tine method using super retarding agent for reducing hydration heat of mass concrete of foundation. According to the results, as the properties of fresh concrete, base concrete satisfies aimed slump and air content, and there is no difference of slump and air content with mixture of super retarding agent. The mixing ratio of super retarding agent is determined for setting time to be retarded by 12 hours in comparison with base concrete, but because the temperature of the air and concrete is low, the difference of setting time is retarded to 24 hours. In man concrete of foundation to which the difference of setting time method is applied, crack by hydration heat is not seen because the lower concrete of super retarding agent generates heat after generation of hydration heat of the upper concrete.

  • PDF

Numerical Simulation of Temperature Gradients for the Mass Concrete Foundation Slab of Shanghai Tower

  • Gong, Jian;Cui, Weijiu;Yuan, Yong;Wu, Xiaoping
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.283-290
    • /
    • 2015
  • Crack control remains a primary concern for mass concrete structures, where the majority of cracking is caused by temperature changes during the hydration process. One-time pouring is a useful construction method for mass concrete structures. The suitability of this method for constructingon of the Shanghai Tower's mass concrete foundation slab of Shanghai Tower is considered here by a numerical simulation method based on a 6- meter- thick slab. Some of the conclusions, which can be verified by monitoring results conducted during construction, are as follows. The temperature gradient is greater in the vertical direction than in the radial direction, therefore, the vertical temperature gradient should be carefully considered for the purpose of crack control. Moreover, owing to cooling conditions at the surfaces and the cement mortar content of the slab, the temperatures and temperature gradients with respect to time vary according to the position within the slab.

Hydrate Heat Analysis for the Determination of Optimized Thickness in Mass Concrete (매스 콘크리트의 적정 타설높이 산정을 위한 수화열 해석)

  • 신성우;이광수;유석형;김선호;황동규;박기홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.385-390
    • /
    • 2001
  • The thermal crack in mass concrete is mainly due to the difference of concrete temperature, which is generated by hydration heat of cement. As the thickness of mat foundation increases, the difference of temperature becomes bigger. The purpose of this study is to estimate the optimum placing depth. The temperature of real mat foundation was observed and the thermal analysis by Finite Element Method was executed. Finally, the crack index according to the placing depth was estimated.

  • PDF

Thermal Crack Characteristics of Concrete Walls with Pipe Cooling (파이프 쿨링 공법 적용에 따른 벽체구조물의 온도균열 특성)

  • 박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper reports the performance results of hydration heat control of mass concrete walls with pipe cooling system. The thickness of walls ranged from 0.9 to 2.2m. In order to investigate the effect of pipe cooling on the thermal and thermal crack characteristics, the pipe cooling was conducted for 42 walls, and the investigation of thermal cracks was conducted for 14 walls. Based on the investigation, the pipe cooling method decreased the peak temperature of about 13-2$0^{\circ}C$ and the thermal crack width of about 30% for mass concrete walls.

  • PDF

Application Strudy on High Strength Concrete (고강도콘크리트의 실용화에 관한 연구)

  • 천용호;김재욱;정환욱;문장수;정장진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.241-245
    • /
    • 1995
  • This study is for estimating strength of mass concrete by finding out temperature and strength distribution through manufacturing actual model of construction mixed by appropriate mixing ratio, which is selected by result of exciting study and expriment of test-piece. Following result was obtained from experiment of member model to find out strength revelation of high mass concrete.

  • PDF

An Experimental Study on the Semi-Adiabatic Temperature Rise Test of Concrete Considering Outside Temperature and Specimen Size (외기온도 및 시험체 크기를 고려한 콘크리트의 간이-단열온도 상승시험에 관한 실험적 연구)

  • On, Jeong-Kwon;Kim, Young-Sun;Moon, Hyoung-Jae;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.563-571
    • /
    • 2021
  • Recently, due to the increase in high-rise apartment and residential-commercial complex buildings, a number of mega-class mass concrete members with a thickness of 3m or more have been designed. As the construction of mass concrete such as transfer beam and slab is increasing not only in foundation members but also in special structures, research on reducing temperature cracks in mass concrete is being conducted. To review temperature cracks in mass concrete, it is important to review the thermal properties of concrete, but it is difficult to use an adiabatic temperature rise tester in the field, so the semi-adiabatic temperature rise test is mainly used. In this study, to improve the accuracy of the results of concrete heat characteristics gained by the semi-adiabatic temperature rise test, various factors affecting heat loss compensation and methods were reviewed and presented.