• Title/Summary/Keyword: martingale

Search Result 117, Processing Time 0.026 seconds

ON THE MARTINGALE EXTENSION OF LIMITING DIFFUSION IN POPULATION GENETICS

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • The limiting diffusion of special diploid model can be defined as a discrete generator for the rescaled Markov chain. Choi([2]) defined the operator of projection $S_t$ on limiting diffusion and new measure $dQ=S_tdP$. and showed the martingale property on this operator and measure. Let $P_{\rho}$ be the unique solution of the martingale problem for $\mathcal{L}_0$ starting at ${\rho}$ and ${\pi}_1,{\pi}_2,{\cdots},{\pi}_n$ the projection of $E^n$ on $x_1,x_2,{\cdots},x_n$. In this note we define $$dQ_{\rho}=S_tdP_{\rho}$$ and show that $Q_{\rho}$ solves the martingale problem for $\mathcal{L}_{\pi}$ starting at ${\rho}$.

Valuation of Options in Incomplete Markets (불완전시장 하에서의 옵션가격의 결정)

  • Park, Byungwook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.2
    • /
    • pp.45-57
    • /
    • 2004
  • The purpose of this paper is studying the valuation of option prices in Incomplete markets. A market is said to be incomplete if the given traded assets are insufficient to hedge a contingent claim. This situation occurs, for example, when the underlying stock process follows jump-diffusion processes. Due to the jump part, it is impossible to construct a hedging portfolio with stocks and riskless assets. Contrary to the case of a complete market in which only one equivalent martingale measure exists, there are infinite numbers of equivalent martingale measures in an incomplete market. Our research here is focusing on risk minimizing hedging strategy and its associated minimal martingale measure under the jump-diffusion processes. Based on this risk minimizing hedging strategy, we characterize the dynamics of a risky asset and derive the valuation formula for an option price. The main contribution of this paper is to obtain an analytical formula for a European option price under the jump-diffusion processes using the minimal martingale measure.

ON THE DIFFUSION OPERATOR IN POPULATION GENETICS

  • Choi, Won
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.677-683
    • /
    • 2012
  • W.Choi([1]) obtains a complete description of ergodic property and several property by making use of the semigroup method. In this note, we shall consider separately the martingale problems for two operators A and B as a detail decomposition of operator L. A key point is that the (K, L, $p$)-martingale problem in population genetics model is related to diffusion processes, so we begin with some a priori estimates and we shall show existence of contraction semigroup {$T_t$} associated with decomposition operator A.

CONVERGENCE THEOREMS FOR SET VALUED AND FUZZY VALUED MARTINGALES AND SMARTINGALES

  • Li, Shoumei;Ogura, Yukio
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.765-782
    • /
    • 1998
  • The purpose of this paper is to give convergence theorems both for closed convex set valued and relative fuzzy valued martingales, and sub- and super- martingales. These kinds of martingales, sub- and super-martingales are the extension of classical real valued martingales, sub- and super-martingales. Here we compare two kinds of convergences, in the Hausdorff metric and in the Kuratowski-Mosco sense. We also introduce a new convergence for the fuzzy valued case in the graph sense and obtain convergence theorems.

  • PDF

LARGE DEVIATION PRINCIPLE FOR SOLUTIONS TO SDE DRIVEN BY MARTINGALE MEASURE

  • Cho, Nhan-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.543-558
    • /
    • 2006
  • We consider a type of large deviation Principle(LDP) using Freidlin-Wentzell exponential estimates for the solutions to perturbed stochastic differential equations(SDEs) driven by Martingale measure(Gaussian noise). We are using exponential tail estimates and exit probability of a diffusion process. Referring to Freidlin-Wentzell inequality, we want to show another approach to get LDP for the solutions to SDEs.

OPERATOR FRACTIONAL BROWNIAN SHEET AND MARTINGALE DIFFERENCES

  • Dai, Hongshuai;Shen, Guangjun;Xia, Liangwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.9-23
    • /
    • 2018
  • In this paper, inspired by the fractional Brownian sheet of Riemann-Liouville type, we introduce the operator fractional Brownian sheet of Riemman-Liouville type, and study some properties of it. We also present an approximation in law to it based on the martingale differences.

ON THE DIFFUSION PROCESSES AND THEIR APPLICATIONS IN POPULATION GENETICS

  • Choi, Won;Lee, Byung-Kwon
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.415-423
    • /
    • 2004
  • In allelic model X = ($x_1,\;x_2,...x_{d}$), $M_f(t)$= f(p(t)) - ${{\int}^{t}}_0$Lf(p(t))ds is a P-martingale for diffusion operator L under the certain conditions. In this note, we can show uniqueness of martingale problem associated with mean vector and obtain a complete description of ergodic property by using of the semigroup method.

ON THE MARTINGALE PROBLEM AND SYMMETRIC DIFFUSION IN POPULATION GENETICS

  • Choi, Won;Joung, Yoo-Jung
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.1003-1008
    • /
    • 2010
  • In allelic model $X\;=\;(x_1,\;x_2,\;\cdots,\;x_d)$, $$M_f(t)\;=\;f(p(t))\;-\;\int_0^t\;Lf(p(t))ds$$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we define $T_tf\;=\;E_{p_0}^{p^*}\;[f((P(t))]$ for $t\;{\geq}\;0$ for using a new diffusion operator $L^*$ and we show the diffusion relations between $T_t$ and diffusion operator $L^*$.

ASYMPTOTIC OPTION PRICING UNDER A PURE JUMP PROCESS

  • Song, Seong-Joo
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.237-256
    • /
    • 2007
  • This paper studies the problem of option pricing in an incomplete market. The market incompleteness comes from the discontinuity of the underlying asset price process which is, in particular, assumed to be a compound Poisson process. To find a reasonable price for a European contingent claim, we first find the unique minimal martingale measure and get a price by taking an expectation of the payoff under this measure. To get a closed-form price, we use an asymptotic expansion. In case where the minimal martingale measure is a signed measure, we use a sequence of martingale measures (probability measures) that converges to the equivalent martingale measure in the limit to compute the price. Again, we get a closed form of asymptotic option price. It is the Black-Scholes price and a correction term, when the distribution of the return process has nonzero skewness up to the first order.