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ON THE MARTINGALE PROBLEM AND SYMMETRIC
DIFFUSION IN POPULATION GENETICS

WON CHOI AND YOO JUNG JOUNG

ABSTRACT. In allelic model X = (z1,z2,--- ,2q),

Mf(t)=f(p(t))—/ Lf(p(t))ds
0

is a P-martingale for diffusion operator L under the certain conditions. In
this note, we define

T.f = ER [f((P(t))] for t>0

for using a new diffusion operator L* and we show the diffusion relations
between T; and diffusion operator L*.
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1. Introduction

Consider n locus model
X: (31,372,"‘ ’md) E Rd’

so we find n genes on a chromosome. A partition X describes a state of a
chromosome and X means that there exist d kinds of alleles which occupy z;
loci, z2 loci, ---, x4 loci. If the partition X has «; parts equal to i, then X
describes that there exists «; kinds of alleles occurring ¢ loci for each 7. Let
gi; denote “mutation rate” or “gene conversion rate” from a partition X; to
another partition X; per generation measured on the ¢ time scale and p; denotes
the frequency of chromosome of type X;.

Let S be a countable set. In population genetics theory we often encounter
diffusion process on the domain

K = qp=(pi)ies; pi 20, sz‘=1
i€S
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We suppose that the vector p(t) = (p1,p2,---) of gene frequencies varies with
time t.
Let L be a second order differential operator on K

02 0
L= ai;(p)—=—+ ) b
3;;¢m®£m é;(m®i
with domain C?(K), where {a;;} is a real symmetric and non-negative definite
matrix defined on K and {b;} is an measurable function defined on K.

We assume that {a;;} and {b;} are continuous on K. Let Q = C([0, ) : K)
be the space of all K-valued continuous function defined on [0, 00). A probability
P on (2, F) is called a solution of the (K, L, p)-martingale problem if it satisfies
the following conditions,

(1) P(p(0) =p) =1. t
(2) denoting M;(t) = f(p(t))—/o Lf(p(t))ds, (Ms(t), F;) is a P-martingale
for each f € C%(K).

The diffusion operator L was first introduced by Gillespie([6]) in case that the
partition consists of two points. In this case, L is a one-dimensional diffusion op-
erator. However, the uniqueness of solutions of the (K, L, p)-martingale problem
has not been generally established. For this problem, Either([4]) proved that if
{a:;(p)} = {pi(d;; — p;)} for Kronecker symbol §;; and {b;(p)} are C*-functions
satisfying a certain condition, then the uniqueness of the (K, L, p)-martingale
problem holds. Also, Okada([3]) showed that the uniqueness holds for a rather
general class in two dimension. In case that L reduces to an infinite allelic diffu-
sion model of the Wright-Fisher type, Either([5]) gave a partial result. Choi([1])
defined new symmetric preserving transformation. He proved Uniqueness for
martingale problem and symmetric property.
In this note, we define

T.f = BE [f(P(®)] for t>0

for using a new diffusion operator L* and we show the diffusion relations between
T; and diffusion operator L*.

2. The main results

Definition. A sequence {X1,Xo,---,X,} of partitions is called (X;,X)-
chain if X; 1 is a consequent of X; by mutation or gene conversion for each

j=1412,---,J—1.
(2%(%QH(WAJ)“
Q21 q32 qJ J-1

does not depend on the choice of (X7, X} )-chain.

The value
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Let X be any partition of n and let {X1, Xo,--+, Xj, -} be a ((n), X;)-chain.

Put
J—1 -
P = (g ]H.)’ Pny=1
=1 qj+1 j
Let
i€S

Lemma 1. Let L* be a second order differential operator on K*

. - o? ~ 0
L* = Z aij(P)-———apian +i€ZSbi(P)3P§

1,J€S

where

G (number of elements S) x \/ﬁiﬁjPi(t)Pj(t) if S is finite
Y0 if S is infinite.

Then the uniqueness of solution for the (K*, L*, Py)-martingale problem holds.

Proof. 1t is well-known that to show the existence and uniqueness of solutions
for the (K™, L*, Py)-martingale problem is equivalent to show that the stochastic
differential equation has a unique solution. Therefore this result follows from

Choi([1]). O

We say that the probability measure P* is a minimal solution to the martin-
gale problem for L* starting from Py ( abbreviated by P* ~ L* at Py )

Suppose that there is a unique Pp ~ L* at F. Then the family P, is
measurable, where PJ is determined by the equation

P (p(t) = At 0) = 1.
Define
T.f = B, [f(P®)| for t20

Then we have :

Theorem 2. Suppose Py ~ L*. Then for each 1 <p < oo,
“T;:f”Lp(m) < |flleem) and /thgdm=/thfdm. (1)

In order to prove Theoreml. we can call on the machinery on Fukushima([2])
to construct a strong Markov family @), of probability measure such that

(1) Qz(P(0)=F) =1 and Qa(P(t)=4)=1

(2) Qu(P(t)#5)=0.

3)if  Quf(p(t)) = E%[f(P(t))] for t>0

then HQtf L2 tm) < ”f and /thgdm = /thfdm ’

L2(m)
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(4) / 9Q: fdm — / gfdm = / :(/ 9Q.L* fdm)ds.‘

In order for us to use the existence of (), to gain information about P*, we
need to connect (J, with the martingale problem for L*.

Theorem 3. Let Q, satisfy condition (1) ~ (4) above and let g be nonnegative.
Set Qg = /ng(P(t))m(dt). Then M;(t) is a Qg -martingale. In particular,
under the hypothesis of Theorem 2,

Q, = / Py, g(P(8))m(dt).

Proof. Suppose @ is a bounded nonnegative measurable function satisfying

EP: (®) =1.
Set u(T') = EQs[®,P(s) €T]. Then p < m and h= du is nonnegative. To

. . dm
see this, note that in general

[ voutdn)| = |E% @) <I @ | [E ()| =l @ | ) / gczswdm}
=|| @ | l/lﬁngdm} <@l g ¥ llrm
Hence p <m and if hzg—% , thén‘
Irll<i®lllgll-

Using the Markov property, we now see that for ® ’s of the sort described above,

B% [(P(t+5) ~ (P(5)®] = B [£(P(t) - £(P(0)]
and

EQs [@ / SHL* f(P(u))du] = EQs [@EQMS) / :L* f(P(u))d,u]

s

t
= B [ / L*f(P(u))du}
0
On the other hand

E((P() - (PO))] = [ hQifdm~ [ hpdm = [ :( [ h@uL fam)du

— B [ / :L*ﬂP(u))du]

Thus,
t+s

E@[f(P(t +5)) - f(P(s))®] = B [( / L*f(P(u))du)@]

S
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for ® ’s of the special sort with which we have been dealing. It is now an easy
step to derive

E% [f(P(t+5)) = f(P(s)) | o(P(s) 10 < s < 1)]

= E% [/SHL*f(P(u))du | o(P(s): 0 Ss < t)]

S

and therefore ]V[}‘(t) is a Q4 -martingale. To complete the theorem, note that
by ,if ' = {Po; M; (t) is a Q4-martingale for all f} , then

/ , Samldz) =o.

But then, under the hypothesis of Theorem 2,
Q: = PI’SO for Py €eP.

Hence

Q, = / P} g(P(t))m(dt)

We prepare to prove Theorem 2;
(Proof of Theorem 2)

Given nonnegative f, g , we have

/ gT, fdm = / EP=[f(P(t))]g(P(t))m(dt) = B [f(P(t))] = / 9Q1 fdm

= [ fQugdm = E%[g(P)] = B lg(P()]}f(PIm(d)

_ / fTigdm.
Thus (1) holds for all f,g. From (1), we see that
| / thfdm| - | / thgdml < f g 91

for all f,g . Hence T;f € L'(m)and || Tef lp1my < | fllLi(m for all f.
Since || T; f ||<]| f |l it follows by interpolation that || T2 f || rcn < || £ llzrow -
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