Comm. Korean Math. Soc. 14 (1999), No. 3, pp. 581-595

THE UNIFORM CLT FOR MARTINGALE DIFFERENCE
OF FUNCTION-INDEXED PROCESS UNDER
UNIFORMLY INTEGRABLE ENTROPY

JoNnGsiG BAE AND MooN Joo CHo1l

ABSTRACT. In the present paper we provide a short proof of the uni-
form CLT for the function-indexed martingale difference process under
the uniformly integrable entropy by establishing a maximal inequality.

1. Introduction

In the recent theory of weak convergence and empirical process, authors
often attempt to relax the structure of independent and identically dis-
tributed (IID) random variables or, in statistical terms, a random sample
from a fixed population. One way of relaxing the structure is to remove
the assumption of identical distribution by considering a sequence of inde-
pendent random variables or even a triangular array of random variables
that is pioneered by the Lindeberg and Feller CLT. For a recent result
‘on a triangular array of rowwise independent but not necessarily 11D, see
(17]) among others. Another way of relaxing the structure is to remove the
assumption of independence by considering problems of martingale differ-
ences, of Markov chains, or of various types of mixing. See for example,
[9], [3] for the problem of stationary Markov chains, [11], {1] for the prob-
lem of stationary martingale differences, and [4] for the problem under
B-mixing condition. The other way of relaxing the IID structure based on
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the complete data of random sampling is to consider the so-called random
censoring model. See [10], [15], and [2].

In the study of a uniform central limit theorem (UCLT), two main as-
sumptions on the size of the index set that is usually up to generality of a
metric space or a function space are turned out to be suitable. The first
one is bracketing entropy which is applied by [12] and {1] among others.
The second one is uniformly integrable entropy that is used, for exam-
ple, in the recent paper of [17]. There are trade off relations between
two assumptions. The former does not require an extra assumption on
the envelope of the indexed class but there is a restriction of including
so-called VC graph class, a wide class of function spaces that have many
applications. The later includes VC graph classes, however, needs a mo-
ment condition on the envelope. See [16] and [17].

In this paper we deal with the UCLT for a function-indexed process
constructed from a sequence of martingale differences under the assump-
tion of uniformly integrable entropy, relaxing both the assumptions on
the independence and the identical distribution of the IID structure. The
main method of getting the result is to study a maximal inequality for
martingale differences based on the Freedman inequality as [17] did in the
problem of independent process based on the sub-Gaussian inequality for
Rademacher averages.

The result partially improves that of [17} in the sense that we are deal-
ing with the dependent process. The result improves that of [1] in the
sense that we are dealing with a martingale difference that is not neces-
sarily stationary and the proof is shorter.

In section 2, we introduce some preliminaries on a setup of martingale
differences, function-indexed stochastic process and the size of the index
class of functions. In section 3, we state the main result of the UCLT for
martingale differences. In section 4, we complete the proof of an eventual
uniform equicontinuity result that gives the UCLT by using a truncation
argument and a stopping time argument. Finally, in section 5, we consider
a weak convergence result for a sequential empirical process for martingale
differences. See section 2.12 of [16] for an analogous result on IID setting.

O
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2. Preliminaries

We begin with a given probability space (2,€,P). Let &, C & C & -+ -
be an increasing sequence of sub-o-fields of £. Let (T, p) be a pseudometric
space. Consider a martingale difference process {d; : 1 < j < n, n € N}
indexed by T with respect to the increasing o-fields {£;: 0 < j<n, n€
N}. By that {d; : 1 < j < n, n € N} is a martingale difference process
indexed by T we mean, foreach t € T, {d;{t): 1< j<n, ne N} isa
sequence of random variables satisfying

(@) E(dj(t)|€j-1) =0fort €T,
(b) d;(t) is &;-measurable for t € T'.

We simply denote E;_,d to mean E(d|€;_;), the conditional expectation
of the random element d given the o-field £;_;. Define the conditional
variance process

Uj(t) = Ej_ld]z'(t) forteT.
Notice that, for each ¢ € T, v;(t) is an £;_1-measurable random variable.

In the context of the one dimensional central limit theorem, the partial
sum of a martingale difference sequence is known to be asymptotically
normal. The following CLT for martingale differences appears in the lit-
erature. See, for example, chapter 8 of [13].

PROPOSITION 1. Lett € T be fixed and let {d;(t) : 1 < j < n, n € N}
be a sequence of martingale differences. If as n — oo,

(1) %Z v;(t) —F o*(t), where 0*(t) is a positive constant;
=1
1 n
(2) - Z E;_1(d2(){|d;(t)| > €}) =7 0 for every € > 0;
=1

then —= 377, d;(t) converges in distribution to N(0, o?(t)).

Throughout the paper events are identified with their indicator func-
tions when there is no risk of ambiguity. So, for example, the expression
{ld;(t)| > €} in the summand of (2) means the indicator functions of the
events {|d;(t)| > €}.

IThroughout this paper we use the notation {a; : 1 < j < n, n € N} to denote a
sequence {an}32;.
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The goal of this paper is to establish the UCLT for the process {S,(t) :
t € T'} defined by

(3) S(t) = 71_; Z di(t) for t € T,

where {d; : 1 < j < n, n € N} is a martingale difference process indexed
by T with respect to the increasing o-fields {£; : 0 < j < n,n € N} on
(Q,E&, P).

Establishing a UCLT essentially means showing that L(S,(t) : t €
T) — L(Z(t) : t € T'), where the processes involved here are indexed by
T and are considered as random elements of the Banach space

B{T)={2:T—> R:||z|lr = stlelql")lz(t” < oo},

the space of the bounded real-valued functions on T, taken with the sup
norm. The limiting process Z = (Z(t) : t € T) is a Gaussian process
whose sample paths are contained in

Ug(T, p) :== {2z € B(T) : z is uniformly continuous with respect to p }.

Notice that (B(T),|| - |lr) is a Banach space and Up(T,p) is a closed
subspace of (B(T),|| - ||r) and hence is a Banach space. In particular
Us(T, p) is separable if and only if (T, p) is totally bounded.

Until recent years, it is common to introduce a class of functions as an
index set of a stochastic process in the theory of weak convergence and
empirical process. See the recent text of [16] among others. In order to
introduce this concept, let (X, X') be a measurable space. Let (F,||-||)
be a subset of a normed vector space of real functions from X to R. Here,
of course, || - || is the norm inherited by the normed vector space RX, the -
space of all functions from X to R. In this case by that {d; : 1 < j <
n, n € N} is a martingale difference process indexed by F with respect to
the increasing o-fields {£; : 0 < j < n, n € N} we mean, for each f € F,
{f(d;):1 < j <n, n €N} is a sequence of random variables satisfying

(a) E;-1f(d;) =0for f € F;
(b) f(d;) is £-measurable for f € F.

Define, similarly as before, the conditional variance process

’Uj(f) = Ej-1f2(dj) for f € F.

O
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In measuring the size of the class F we are going to use the concepts
of covering numbers and packing numbers. See [12] and [1] where the
assumption of bracketing entropy is used. We introduce the definitions in
[16]. See also [5].

DEFINITION 1. (Covering number) The covering number N(e, F,||-||)
is the minimum number of balls {g : |[|g — A|| < €} of radius € needed to
cover F.

DEFINITION 2. (Packing number) Call a collection of points e-separated
if the distance between each pair of points is strictly larger than €. The
packing number D(e, F, ||-||) is the maximum number of e-separated points

in F.

The concepts of covering number and packing number are equivalent in
the sense that N(2¢, F, ||-||) < D(2¢, F,||-|]) < N(¢, F,||-||)- By definition,
the space (F, || - ||) is totally bounded if and only if the covering numbers
and/or the packing numbers are finite for every € > 0. '

Finally we introduce the concept of uniformly integrable entropy. Let
F be an envelope of 7. That is, F is a measurable function from X to
[0,00) such that sup;x |f(z)| < F(z) for all z € X. Let M (X, F) be the
set of all measures v on (X, X) with v(F?) := [, F?dy < oco.

DEFINITION 3. (Uniformly integrable entropy) Say that F has uni-
formly integrable entropy with respect to Ly-norm if

o0
| sup N, g e < oo,
0 YEM(X,F)

where d¥)(f, ) == [, (f — g)2dn)"/2.

When the class 7 has uniformly integrable entropy, (F, d£,2)) is totally
bounded for any measure y. Many important classes of functions, such as

VC graph classes, have uniformly integrable entropy. See section 2.6 of
[16].

3. The Uniform CLT for Martingale Differences

Consider a class F of measurable functions defined on a measurable
space (X, X) with envelope F. Given a martingale difference process
{d; : 1 £ j <n, n € N} indexed by F with respect to an increasing
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o-fields {€; : 0 < j < n, n € N} in (X,X), we consider the process
{Sn(f) : f € F} defined by

(@) Su(f) = \/Lﬁ S f(d), for f € F.

Suppose that F has uniformly integrable entropy with respect to Ly-norm:

| sup N (F e < o
0

yeM(X,F)

where M(X,F) is the set of all measures v on (X,X) with v(F?) :=
Jx F?dv < 00 and d)(f, g) := [ [ (f — g)’dy]"/*. Write

5) d(f,9) == dP(f,9) = [E(f — 9)""%.
We equip the space F with the pseudometric d so that (F,d) is totally
bounded.

Let

(f.0) = = Z Bi(F(d) — () for g € F.

We use the following definition of weak convergence which is originally
due to [8]. Recall that B(F) is the space of the bounded real-valued
functions on F.

DEFINITION 4. A sequence of B(F)-valued random functions {Y, : n >
1} converges in law to a B(F)-valued Borel measurable random function
Y whose law concentrates on a separable subset of B(F), denoted Y;, = Y,

if
Eg(Y) = lim Eg(¥:), Y9 € C(B(F) |- Il»)
where C(B(F), ||+ ||) is the set of all bounded, continuous functions from

(B(F),|| - ||#) into R. Here E* denotes upper expectation with respect to
the outer probability P*.

We are ready to state the UCLT for martingale differences.

THEOREM 1. Let {d; : 1 < j < n, n € N} be a martingale difference
process indexed by a class F of measurable functions with envelop F' on

O
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a measurable space (X,X). Suppose that F has uniformly integrable
entropy with EF? < co. Assume that there exists a constant D such that

ox(f,9) )
6 P'{sup -2 >D) -0, asn — 0.
( ) (f,gef dz(f’ g)
Suppose that, as n — oo,
1 .
(7) EZEj—lFQ(dj) —F o*(F),
=1

where 0?(F) is a positive constant; and,
1 n
(8) - ZEj_l(F2(dj){F(d-j) > ey/n}) =T 0, for every e > 0.
=1

Suppose there exists a Gaussian process Z such that the finite dimensional
distributions of S,, converge to those of Z. Then

Sp = Z as random elements of B(F).

The limiting process Z = {Z(f) : f € F} is mean zero Gaussian with
covariance structure EZ(f)Z(g) and the sample paths of Z are bounded
and uniformly continuous with respect to the metric d.

REMARK.

1. We need the moment condition on the envelope, EF? < oo, for the
class F of functions when we use uniformly integrable entropy. On
the other hand, one can derive this condition from the assumption
of integrability of Lo-bracketing entropy. See, for example, [1].

- 2. A sufficient condition to the Lipschitz condition (6) is that

B 1(£(d;) — g(d;))*
fs,;g; Z By (] 2) converges.

3. The condition (7) on the conditional variances and the Lindeberg
condition (8) are essential in the sense that the parallel conditions
(1) and (2) are required in Proposition 1.

PROOF. The result is a consequence of Theorem 2 and the assumption
on the finite dimensional distribution convergence of S, to those of Z by
applying Theorem 10. 2 of [14] to the process {S,(f) : f € F} indexed
by the totally bounded pseudometric space (F,d). O
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Our program in establishing the UCLT for the martingale difference
process is to prove the following eventual uniform equicontinuity of the
process {S,(f) : f € F} by the results on the Freedman inequality and a
chaining argument, a truncation argument and a stopping time argument.

THEOREM 2. Under the assumptions (6), (7), and (8) of Theorem 1,
we have the eventual uniform equicontinuity of the process {S,(f) : f €
F}. That is, for every € > 0 there exists n > 0 such that

limsup P* ( sup |—\}_—n Z(f(dj) —-g(d;))| > 6) <e.

n—00 d(f.9)<n

In the following section we are going to make our efforts to complete
the proof of Theorem 2.

4. Proof of the Theorem 2

We begin this section with a modified version of Freedman inequality
and a maximal inequality for the process that can be applied when the
process is a sub-Gaussian. Notice that for any bounded random variable
€ on Q, we use the notation ||¢]]. to denote sup,cq |€(w)].

LEMMA 1. Let (d;)i<j<n be a martingale difference with respect to in-
creasing o-fields (€;)o<j<n. Thatis, E(d;|€;—1) =0, j =1,---,n. Suppose
that ||d;||c < M for a constant M < 00,5 = 1,--- ,n. Let T < n be a
stopping time relative to (€;) that satisfies || 3 7_, E(d3|€;-1)|lo < L for

aconstant L. If 0 <n < 2—LM, then

T 2
p (IZdJ’I >?7) < 2-eXP{—gL-}-
j=1

PROOF. Since the bound for the tail probability P (|Z;=1 dj| > n) in
Freedman inequality, see Proposition 2.1 of [7], is given by

2
Ui
2. ———— 3 f >
exP{ 2(L+Mn)} ornz0
the result directly follows from the restriction 0 <7 < ﬁ O
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The following Lemma whose proof is based on the chaining argument
appears in [16]. For an analogous result on a probability version, see the
chaining lemma in [13].

LEMMA 2. Let (T, p) be a pseudometric space. Let {X(t):t € T} be

a separable sub-Gaussian process in the sense that

2
P(|X(s) — X(t)| >n) <2exp {_#9—15} for every s,t € T, n > 0.

Then for 6 > 0 there exists a universal constant K such that
)
E sup |X(s) - X)) < K/ V1og D(e, T, p)de,
p(s,t)<d 0
where D(¢, T, p) is the packing number for (T, p).

REMARK.
1. One can work with an upper bound K exp{—aﬁ(zs—t)} for certain con-

stants K and C instead of 2exp{—;2—gﬁ} in the Lemma 2 without
affecting the problem. See Problem 2.2.14 of [16].

2. The separability of the process { X (¢) : t € T} in the Lemma 2 means
that sup,, <5 | X(s) — X(t)| remains almost surely the same if the

index set T is replaced by a suitable countable subset.

From now on, we make the technical assumption that the process
{Sn(f) : f € F} is separable where d is the metric given in (5). Compare
with the statement of the chaining lemma in [13] where the separability
is assumed in a different way.

We introduce the following truncation argument. For § > 0, n > 1,

feF, let
Vb i f() > /b
f) =1 FO) IOl v
—/nb if f(-) < —/mb.

so that fV™)(.) is a truncation of f(-) at the level v/n8. For fixed 6 > 0,
we simplify the notation by writing

f(dj) = fV™(d;) - B;_1 fY(dy).
Define
SO(f) =

-

f(d;) for fe F.
=1

n <
J
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The following maximal inequality for the truncated and stopped mar-
tingale differences plays a key role in the proof of the main result. See
Theorem 3.1 of [17] for the parallel result in the case of independent pro-
cess. See also Proposition 1 of [1] in the case of stationary martingale
difference where a delicate chaining argument with stratification is em-
ployed under the bracketing entropy.

THEOREM 3. Let {d; : 1 < j <n, n € N} be a sequence of martingale
differences of Ly-process indexed by a class F of measurable functions with
envelop F on a measurable space (X, X). Let T be a finite stopping time
relative to the increasing o-fields {€; : 0 < j < n, n € N} that satisfies

o%(f,9) < Dd*(f,g) for f,g € F and for a constant D.

Then, for every § > 0, and for every § < (—Dl—‘;z)l/z, there exist universal
constants K and C such that

E sup |8Y)(f) —5¥(g)| < KJ(CS)
d(f,9)<é

where

J((S) = /: sup (log N(f[’Y(F2)]1/2,]:, dfyZ)))l/Zde.

yeM(X,F)

PROOF. Let & > 0, let 0 < 8 < (B%)V/2. Let f,g € F fixed. Then the
martingale difference d; := f—(d')%f(@ has an upper bound M := 46. Take
L :=5Dd?(f,g). Then we have

-71; Z E;1(f(d)) — §(d;))? < 12762 + 402 < 1276° + 4Dd*(f,g) < L.
j=1

Now, apply Lemma 1 to obtain for 0 < 7 < ﬁ

2
P(IS(f) = SP9)l > n) < 2-exp {‘m} '

Next, apply Lemma 2 to the process {Sg))( f) : f € F} to conclude that

8
(9) E sup |S9(f) - SO (g)| <K / (log D(e, F, d))'/*de
d(f,g)<é 0

for a universal constant K. Finally an observation of the equivalence
between the packing number and the covering number, and a change of

O
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variables gives the bound K J(C§) where K and C are universal constants.
This completes the proof of Theorem 3. (]

We are now ready to finish the proof of Theorem 2.

PROOF. Let € > 0 be fixed. Since {f(d;),1 < j < n,n & N}isa
sequence of martingale differences with respect to {£;,0 < j<n,ne N}
we have

(10) 1B (f(d){I£(d)| > vno})| = |Ej-a(F(dy){If(d)] < vnb})|.

Note that for any 8 > 0, f € F, we have
sup S, (f) = S¥(£)
feF

= sup — Z{f — fV () + By (FY™)(d)))}

f€.7-'

IA

sup = Z{If(d ~ FYd))| + | B (FY™)(d))) 1}

< \/_ZF () > v}
+oup - Z B2 (F(d ()] < Vo)
+§2£IZ|EJ (VAB)I£(&)] > vs})
< \/_ZF HE(;) > Vi)
+§2§:%i'@ (@S] > vao})] by (10)
< \/_ZFd,{F ) > Vbt + — ZEJI (d;){F(d;) > v/nb})
<

o ; F>(d){F(d;) > v/} + o ; B, 1 F2(d,){F(d;) > Vnb} .
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The last two bounds converge to zero in probability by the condition (7)
on the conditional variances and the Lindeberg condition (8). Therefore

we have P{supsecx |Sn(f) — SO > £} = o(1). Since for every n >0
sup |Su(f) = Sal9)l < sup [SPU(f)— Sff)(g)l + 2?1? 1Sa(f) = SP(£)],
€

d(f.g9)<n d(f.9)<n

it remains to show for n large enough, there exists n > 0 such that

(11) P( sup 189(5)-50() > 5 | <=
d(f.9)<n 2 2
We define a sequence of random variables 7, for n > 1
o?
T ::n/\ma.x{k>0 (f,g) D}
1 gE}' d? (fa g)

Being the random variables o2(f, g) predictable, we see that 7, is a stop-
ping time. Notice that

(f,9)
) P (s 52> D) =0

Since P(1, < n) — 0 as n — oo, it is enough to prove that for every
n > 0, and for every 6 < (_’2.)1/2

€
d(f.9)<n 2’

(13) P* ( sup |S{)(f) - S (g)l > g) <

where

(0) — Z

Notice that from (12) we have
o2 (f,9) < Dd*(f,9).

From Theorem 3, we conclude that for every n > 0, and for every § <
2
(D—ITZL)I/ 2 there exist universal constants K and C such that

E* sup |SO(f)-5S¥(g)| < KJ(Cn)
d(f.9)<n
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where

Cn
J(C’f]) = / sup (log N(e['y(F2)]1/2,]:, d§2)))1/2d€‘
0 YeEM(X,F)

Since F has uniformly integrable entropy, we can choose n > 0 small
enough to have 2K J(Cn) < §. Now notice that

P ( cup [S9(f) — SO(g)] > 2)

d(f,9)<n

< 2B sup 189(f) - 59(g)|

€ dlf.g9)<n
< 2KJ (017),
€
which is less than § by the choice of 7. The proof of Theorem 2 is com-
pleted. O

5. The Sequential Empirical Process for Martingale Differ-
ences

Let (X, X) be a measurable space. We consider (2 = X%, & = X%, P)
as the basic probability space. We denote by S the left shift on 2. We
assume that P is invariant under S, i.e., PS~! = P, and that S is ergodic.
We denote by £ = --- ,£_1,&,&1, -+ the coordinate maps on 2. From our
assumptions it follows that {¢;};cz is a stationary and ergodic process.
Next we define for j € Z a o-field & := o(¢; : @ < j) and H; = {f :
Q — R: fis &-measurable and f € L*(Q)}. We denote for f € L*(Q),
E;_«(f) == E(f|€;-1), and Hy© H_, := {f € Hy : E(fg) = 0forg €
H_,}. Finally for every f, g € L*(Q) we put d(f,g) = [E(f — g)}]'/%
Consider F C Hy © H_, with envelope F satisfying EF? < co. From
our setup it follows that for every f € F, {f(S/(¢£)),&;} is a stationary
martingale difference sequence.

Consider now the sequential empirical process {Z,(s, f) : s € [0,1],
f € F} for the stationary martingale differences defined by

[ns]

Zf(d]) for s € [0, ]_] and f € F,

Jj=1

4)  Zusf) = —\}—ﬁ—
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where d; := S(¢), d := S°(&€)(= €) and [z] denotes the integral part of z.
The following CLT for the sequential empirical process Z, generalizes
that of IID result to the stationary and ergodic martingale differences.

THEOREM 4. Assume that F has uniformly integrable entropy with
EF? < co. Suppose that
E_i[f(d) — g(d)]?

) 1[f(
(15 b rer | @(f,9) = o

Then
Zn = Z as random elements of B([0, 1] x F).

The limiting process Z = {Z(s, f) : s € [0,1}, f € F}, known as a Kiefer-
Muller process, is mean zero Gaussian with covariance function

EZ(s,)Z(t,9) = (s A)Ef(£)9(£)

and the sample paths of Z is bounded and uniformly continuous with
respect to the metric |s — t| + d(f, g).

In the proof of Theorem 4, we are going to use some well known facts
such as a multivariate CLT for stationary martingale differences, a per-
manence of the uniform entropy bound, and Lebesgue Dominated Con-
vergence Theorem.

PROOF. Since the covariance function of Z, is given by

cov(Zn(s, f), Za(t, g)) = MEJC(E)Q(O,

we have EZ(s, f)Z(t,g) = (sANt)Ef(€)g(€). By the multivariate CLT for
stationary and ergodic martingale differences, see for example Theorem
7.7.5 of [6], the finite dimensional distributions of the process {Z,(s, f) :
s € [0,1], f € F} converge to those of Z. By Theorem 2.10.20 of [16], the
uniformly integrable entropy condition of the class [0, 1] x F is inherited
from that of . Next, use the stationarity to observe that the condition
(6) is reduced to the condition (15) and the condition (7) follows from the
assumption EF? < co. Finally apply Lebesgue Dominated Convergence
Theorem to verify the Lindeberg condition (8). Now, apply Theorem 1 to
complete the proof. a
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