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ON THE DIFFUSION OPERATOR IN POPULATION

GENETICS†

WON CHOI

Abstract. W.Choi([1]) obtains a complete description of ergodic prop-
erty and several property by making use of the semigroup method. In this
note, we shall consider separately the martingale problems for two opera-

tors A and B as a detail decomposition of operator L. A key point is that
the (K,L, p)-martingale problem in population genetics model is related to
diffusion processes, so we begin with some a priori estimates and we shall

show existence of contraction semigroup {Tt} associated with decomposi-
tion operator A.
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1. Introduction

Let S be a countable set. In population genetics theory we often encounter
diffusion process on the domain

K = {p = (pi)i∈S ; pi ≥ 0,
∑
i∈S

pi = 1}.

We suppose that the vector p(t) = (p1, p2, · · · ) of gene frequencies varies with
time t.

Let L be a second order differential operator on K

L =
∑
i,j∈S

aij(p)
∂2

∂pi∂pj
+
∑
i∈S

bi(p)
∂

∂pi

with domain C2(K), where {aij} is a real symmetric and non-negative definite
matrix defined on K and {bi} is an measurable function defined on K. The
coefficient {aij} comes from chance replacement of individuals by new ones after
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random mating and {bi} is represented by the addition of “mutation or gene
conversion rate” and the effect of natural selection. The operator L has the same
form as the generator of the diffusion describing a p(t)-allele model incorporating
mutation and random drift with single locus, but we could give a remark that
the matrix qij depends on the combinatorial structure of the partitions.

We assume that {aij} and {bi} are continuous on K. Let Ω = C([0,∞) : K)
be the space of all K-valued continuous function defined on [0,∞). A probability
P on (Ω,F) is called a solution of the (K,L, p)-martingale problem if it satisfies
the following conditions,

(1) P (p(0) = p) = 1.

(2) denoting Mf (t) = f(p(t))−
∫ t

0
Lf(p(t))ds, (Mf (t),Ft) is a P -martingale

for each f ∈ C2(K).

The diffusion operator L was first introduced by Gillespie([4]) in case that the
partition consists of two points. In this case, L is a one-dimensional diffusion op-
erator. However, the uniqueness of solutions of the (K,L, p)-martingale problem
has not been generally established. For this problem, Either([2]) proved that if
{aij(p)} = {pi(δij − pj)} for Kronecker symbol δij and {bi(p)} are C4-functions
satisfying a certain condition, then the uniqueness of the (K,L, p)-martingale
problem holds. Also, Okada([5]) showed that the uniqueness holds for a rather
general class in two dimension. In case that L reduces to an infinite allelic
diffusion model of the Wright-Fisher type, Either([3]) gave a partial result.

W.Choi([1]) obtains a complete description of ergodic property and several
property by making use of the semigroup method. In this note, we shall consider
separately the martingale problems for two operators A and B as a detail de-
composition of operator L. A key point is that the (K,L, p)-martingale problem
in population genetics model is related to diffusion processes, so we begin with
some a priori estimates and we shall show existence of contraction semigroup
{Tt} associated with decomposition operator A.

2. Main results

We are concerned with diffusion processes associated with second order dif-
ferential operator L with random genetic drift

aij = piβiδij + pipj(
∑
k∈S

piβk − βi − βj).

Here {βi} is non-negative constant satisfying that supiβi < +∞, and δij stands
for the Kronecker symbol.

In order to consider an stochastic differential equation for p(t), we need bound-
ary conditions and regularity condition on the drift coefficients bi.

[Assumption for bi(p)] : {bi(p)}i∈S are real functions defined on K which
satisfy the following conditions :

(i) bi(p) ≥ 0 if pi = 0,
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(ii)
∑

i∈S bi(p) = 0 uniformly in p ∈ K,
(iii) there exists a matrix {cij}i,j∈S such that cij ≥ 0 for every i and j of S,

and
|bi(p)− bi(p

′)| ≤
∑
j∈S

cij |pj − p′j |.

Suppose that {bi(p)}i∈S satisfies the [Assumption for bi(p)]. Then p(t) is
unique solution to stochastic differential equation

dpi(t) =
∑
k∈S

αik(p(t))dBk(t) + bi(p(t))dt, i ∈ S

where
αij(p) = (δij − pi)

√
βjpj

and Bi are independent Brownian motions.

In order to construct the stochastic differential equation associated to mean
vector, we need the following definition.

Definition. A sequence {X1, X2, · · · , XK , · · · } of partitions is called (X1, XK)-
chain if Xi+1 is a consequent of Xi by mutation or gene conversion for each
i = 1, 2, · · · ,.

The value (
q12
q21

)(
q23
q32

)
· · ·

(
qK−1 K

qK K−1

)
· · ·

does not depend on the choice of (X1, XK)-chain.
Let X be any partition of n and let {X1, X2, · · · , Xi, · · · } be a ((n), Xi)-chain.

Put

Pi =
i−1∏
k=1

(
qj j+1

qj+1 j

)
, P(n) = 1.

Let
K1 = {P = (Pi)i∈S :

∑
i∈S

Pi < +∞}

and define a mapping P̄ on K1 called by mean vector

P̄i =
Pi∑
j Pj

.

Consider the solution to stochastic differential equation for Pi(t)

dPi(t) =
√

βiPi(t)dBi(t) + b̃i(P (t))dt, i ∈ S, (1)

where
b̃i(P (t)) = bi(P̄ (t)) + cP̄i(t) + P̄i(t)(βi −

∑
k∈S

P̄k(t)βk)

for a constant c > 0 satisfying c > (1/2)supi∈Sβi.
It was shown easily that the existence and the uniqueness of solutions hold for

the equation (1) when the drift coefficients {bi(p)}i∈S satisfies the [Assumption

for bi(p)], not [Assumption for b̃i(P )].([1]) So, we have the following result.
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Lemma 1. Let L1 be a second order differential operator on K1

L1 =
∑
i,j∈S

ãij(P )
∂2

∂Pi∂Pj
+

∑
i∈S

b̃i(P )
∂

∂Pi

where

ãij =

{
(number of elements S)×

√
βiβjPi(t)Pj(t) if S is finite

0 if S is infinite.

Then the uniqueness of solution for the (K1, L1, P0)-martingale problem holds.

Proof. It is well-known that to show the existence and uniqueness of solutions
for the (K1, L1, P0)-martingale problem is equivalent to show that the stochastic
differential equation (1) has a unique solution. Therefore this result follows from
W. Choi([1]). �

Let Sd be the set of symmetric, non-negative definite, d × d matrices. To
establish the main results, we shall consider separately the operators L1 for

A =
∑
i,j∈S

ãij(P )
∂2

∂Pi∂Pj
(2)

and for

B =
∑
i∈S

b̃i(P )
∂

∂Pi
. (3)

We suppose that the norm on C(K1) is the supremum norm, denoted || · ||K1

and the seminorm | · |Cm(K1) on Cm(K1) is defined by

|f |Cm(K1) =
∑

1≤|α|≤m

||Dαf ||K1 .

Theorem 2. For a positive integer m,and define the operators A and B by (2)

and (3), where ã : K1 → Sd and b̃ ∈ Cm(K1, R
d) satisfies ⟨b̃,∇ã⟩ ≥ 0 on ∂K1.

If
∂

∂t
u = Au (4)

∂

∂t
v = Bv, (5)

then

|u(t, ·)|cm(K1) ≤ |u(0, ·)|Cm(K1) (6)

|v(t, ·)|cm(K1) ≤ eλmt|v(0, ·)|Cm(K1), (7)

where λm is defined in the process of proof.
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Proof. For each multi-index α, define the operator

Aα = A+

d∑
i=1

(
1

2
αi − |α|xi)

∂

∂xi
,

and note that, since b̃(x) = 1
2α − |α|x satisfies the condition of Lemma 1, Aα

satisfies the maximum principle in K1, and that

DαA = AαD
α − 1

2
|α|(|α| − 1)Dα

on C |α|+2(K1). By differentiating (4), we therefore obtain

∂

∂t
uα = Aαu

α − 1

2
|α|(|α| − 1)uα

for 1 ≤ |α| ≤ m, where uα = Dα
xu, and these equations, together with the

maximum principle, imply (6).
As for (7), there exist functions cαγ , defined for each pair of multi-indices α

and γ with 1 ≤ |γ| ≤ |α| ≤ m, such that

DαB = BDα +
∑

1≤|γ|≤|α|

cαγD
γ

on C |α|+1(K1) for 1 ≤ |α| ≤ m. By differentiating (5), we therefore obtain

∂

∂t
vα = Bvα +

∑
1≤|γ|≤|α|

cαγv
γ

for 1 ≤ |α| ≤ m. Here vγ = Dγ
xv. These equations, together with the maximum

principle for B, imply (7) with

λm = max1≤|γ|≤m

∑
1≤|γ|≤|α|≤m

||cαγ ||K1 ,

where the norm on C(K1) is the supremum norm. �

For each P ∈ K1, let M be the set of solutions to the martingale problem for
A starting at P . Then martingale implies

EQ
P [f(P (t))] = f(P ) +

∫ t

0

EQ
P [Af(P (s))]ds (8)

for each f ∈ C2(K1) , Q ∈ M. We define the one parameter family {Tt : t ≥ 0}
of transformations from C(K1) to the space of bounded functions on K1 by

Ttf = EQ
P [f(P (t))].

Then we have;

Theorem 3. There exists a strongly continuous non-negative contraction semi-
group {Tt : t ≥ 0} associated with decomposition operator A on C(K1).
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Proof. Let a be an arbitrary integer, an be the number of multi-indices α with
|α| ≤ n. Suppose the coordinates of Ran are to be indexed by these multi-indices.
Define gn : K1 → Ran by gnα(P ) = Pα and

Agnα = (Πng
n)α (9)

where Πn ∈ Ran
⊗

Ran .
Choose un : [0,∞)×K1 → Ran such that un

α(t, ·) = Ttg
n
α. By (8) and (9), we

get

un(t, ·) = gn +

∫ t

0

Γnu
n(s, ·)ds.

By solving this equation, we have

un(t, ·) = etΠngn

for each t ≥ 0. Hence

Tt⟨θ, gn⟩ = ⟨etΠnθ, gn⟩, (10)

for θ ∈ Ran .
Let P(K1) denote the subspace of C(K1) consisting of all polynomials in

P1, P2, · · · , Pd. By (10),

TtTs = Tt+s

and

limt→0||Ttf − f||K1 = 0.

Therefore, since P(K1) is dense in C(K1), and since ||Ttf ||K1 ≤ ||f ||K1 for
each f ∈ C(K1), {Tt : t ≥ 0} is strongly continuous non-negative contraction
semigroup on C(K1). �

Corollary 4. For each positive integer m and f ∈ Cm(K1),

|Ttf |Cm(K1) ≤ |f |Cm(K1).

Proof. Define u(t, ·) = Ttf, t ≥ 0. By (9) and (10), hypothesis (4) of Theorem
2 is satisfied. Therefore the result follows easily. �
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