본 논문에서는 퍼지 선형회귀분석법을 이용한 경쟁 전력시장에서의 전력의 시간별 현물가격을 예측하는 기법을 제시한다. 제안한 기법은 2002년 봄의 일주일에 대한 시간별 수요을 예측하여 본 기법의 타당성과 정확도를 검증하였다. 제안한 방법의 예측 오차는 주중의 경우 3.14%∼6.10%이며, 주말의 경우 7.04%∼8.22%로써 뉴럴 네트워크 기법을 이용한 방법과 비교하여 타당한 결과를 보였다.
Journal of Information Technology Applications and Management
/
제17권3호
/
pp.151-162
/
2010
Recent developments in financial market liberalization and information technology are accelerating the interdependence of national stock markets. This study explores the information spillover effect of the US stock market on the overnight and daytime returns of the Korean stock market. We develop a profitable intra-day trading strategy based on the information spillover effect. Our study provides several important conclusions. First, an information spillover effect still exists from the overnight US stock market to the current Korean stock market. Second, Korean investors overreact to both good and bad news overnight from the US. Therefore, there are significant price reversals in the KOSPI 200 index futures prices from market open to market close. Third, the overreaction effect is different between weekdays and weekends. Finally, the suggested intra-day trading system based on the documented overreaction hypothesis is profitable.
Потребление природного газа в Азии растет быстрыми темпами из-за различных факторов, таких как экономический рост в регионе, урбанизация, переход с угля на газ в секторах производства электроэнергии и промышленности. Из-за географических особенностей и отсутствия международных трубопроводных соединений между странами в АТР большая часть природного газа, экспортируемого азиатским потребителям, транспортируется танкерами по морю в виде сжиженного природного газа. Поскольку азиатский рынок является наиболее прибыльным рынком с самым быстрым ростом спроса, конкуренция между продавцами сжиженного природного газа (СПГ) за долю азиатского рынка усиливается. Конкуренция ускорилась, особенно после того, как на рынок были выведены большие объемы дополнительных поставок со стороны новых экспортеров из США, Австралии и России. Cheniere Energy, первый экспортер СПГ в континентальной части США, не приняла традиционный механизм ценообразования и бизнес-модель. Традиционно цены по долгосрочным контрактам на СПГ индексируются к ценам на конкурирующие виды топлива, такие как сырая нефть. Компания приняла механизм ценообразования и бизнесмодель по системе «кост-плюс». Cheniere Energy выбрала более безопасную и безрисковую систему ценообразования, которая ежегодно гарантирует продавцу фиксированную сумму дохода. Компания зарабатывает одинаковую сумму денег, независимо от динамики цен на природный газ на внутреннем и международном рынке, возможно с меньшим доходом. Однако, успешно внедрив более безопасную и безрисковую бизнес-модель, Cheniere Energy, компания относительно меньшего размера по сравнению с крупными нефтегазовыми компаниями, стала примером для других небольших компаний в стране. Бизнес-модель компании продемонстрировала, как войти и управлять бизнесом СПГ в США в условиях растущей конкуренции между продавцами на внутреннем и международном рынке.
The basis of cyber trading has been sufficiently developed with innovative advancement of Internet Technology and the tendency of stock market investment has changed from long-term investment, which estimates the value of enterprises, to short-term investment, which focuses on getting short-term stock trading margin. Hence, this research shows a Short-term Stock Price Forecasting System on Learning Agent System using DTA(Decision Tree Algorithm) ; it collects real-time information of interest and favorite issues using Agent Technology through the Internet, and forms a decision tree, and creates a Rule-Base Database. Through this procedure the Short-term Stock Price Forecasting System provides customers with the prediction of the fluctuation of stock prices for each issue in near future and a point of sales and purchases. A Human being has the limitation of analytic ability and so through taking a look into and analyzing the fluctuation of stock prices, the Agent enables man to trace out the external factors of fluctuation of stock market on real-time. Therefore, we can check out the ups and downs of several issues at the same time and figure out the relationship and interrelation among many issues using the Agent. The SPFA (Stock Price Forecasting System) has such basic four phases as Data Collection, Data Processing, Learning, and Forecasting and Feedback.
By development of renewable energies and high-efficient facilities and deregulated electricity market, the operation cost of distributed generation(DG) becomes more competitive. The amount of distributed resource is considerably increasing in the distribution network consequently. Also, international environmental regulations of the leaking carbon become effective to keep pace with the global efforts for low-carbon paradigm. It contributes to spread out the business of DG. Therefore, the operator of DG is able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, community energy system(CES) having DGs is recently a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to the transmission service charges and etc. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize the profit. If there is no regulation for carbon emission(CE), the generators which get higher production than generation cost will hold a prominent position in a competitive price. However, considering the international environment regulation, CE newly will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper will introduce the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES and Particle Swarm Optimization (PSO) will be used to solve this problem. The optimal operation of DG represented in this paper is to be resource to CES and system operator for determining the decision making criteria.
Modern investment theory has empirically proved that stock returns can be explained by several factors such as market risk, firm size, and book-to-market ratio. Other unknown factors affecting stock returns are also believed to still exist yet to be found. We believe that one of such factors is the operational efficiency of firms in transforming inputs to outputs, considering the fact that operations is a fundamental and primary function of any type of businesses. To support this belief, this study intends to empirically study the relationship between firm efficiency and stock price performance. Firm efficiency is measured using data envelopment analysis (DEA) with inputs and outputs obtained from financial statements. We employ cross-efficiency evaluation to enhance the discrimination power of DEA with a secondary objective function of aggressive formulation. Using the CAPM-based performance regression model, we test the performance of equally weighted portfolios of different sizes selected based upon DEA cross-efficiency scores along with a buy & hold trading strategy. For the empirical test, we collect financial data of domestic firms listed in KOSPI over the period of 2000~2016 from well-known financial databases. As a result, we find that the porfolios with highly efficient firms included outperform the benchmark market portfolio after controlling for the market risk, which indicates that firm efficiency plays a important role in explaining stock returns.
This study judged that although milk with various properties is currently being released, the growth rate of the milk market has not changed significantly, and the reason for this is that a substitution relationship has been formed between existing white milk and milk with various properties and they are competing with each other. The purpose of this study was to provide implications for the future growth of the milk market by identifying the relationship between diversified milk attributes. As a research method for this purpose the own price elasticity, cross-price elasticity, and expenditure elasticity of each attribute were derived through the LA/AIDS demand system model, and an analysis of consumers' milk purchasing factors was conducted through factor analysis. Based on the analysis results, it presented implications for growth in the milk market, such as expanding products with great differentiation in attributes such as flavor, plant and lactose-free properties, establishment of marketing strategies targeting consumers with children, and expansion of online malls.
This paper analyzes the correlation between Net Benefit Test (NBT) and System marginal price (SMP), which has a significant impact on the allocation of demand response (DR) resources in resource scheduling and commitment (RSC) process, based on the performance data of the demand resource market which has been established in 2014. Demand resources compete with generation resources in the RSC process, and it is prescribed to use demand resources only when net benefit occurs. Analysis result shows that the larger the SMP than the Net Benefit Threshold Price (NBTP), the more the winning bid of demand response resource was. It is interpreted that the introduction of NBT in DR market is justified. The demand resource market has been steadily growing. It is required to expand the scope of resources up to the small-sized DR, and to expand the functionalities of demand resources not only in the current energy market but also in the reserve market in the future. In order for that, institutional improvements are required.
This paper presents a optimal power flow calculation algorithm considering voltage and transient stability. In this method, voltage stability margin and transient stability constraints is incorporated into a optimal power flow calculation formulation to guarantee adequate voltage and transient security levels in power system. In addition, this paper provides the Effect of Nodal Price and decomposed Element in Power System Operation. This Effect can be applied in the Estimation of Electric rates because the Electric market will be Competitive Market. The proposed method is applied to IEEE-24 Reliability Test System and the results shows the effectiveness of the method.
1997년 말의 경제위기 상황 이후 한국의 부동산 시장에서의 공급 증가 및 수요의 위축으로 부동산 가격이 크게 폭락하였다. 주택 시장에 있어서도 실질소득이 감소와 주택금융의 부족 등에 의한 수요의 감소로 단기간 동안 주택가격이 급격히 하락하였다. 그러나, 부동산 경기 부양을 유도하는 정책적인 기제에 의해 1998년 말 이후 주택가격이 다시 상승하게 되었다. 이 경우 주택 가격 하락기나 그 이후의 회복기에 도시별 격차가 뚜렷하게 나타났다. 각 도시들은 주택 가격의 하락률과 상승률의 차이에 따라 4개 그룹으로 구분될 수 있다. 몇몇 도시들에서는 주택 가격의 하락기에는 급격한 하락을 보인 대신 상승기에는 다시 비교적 빠른 상승세를 보여 경제 위기 이전의 상황으로 그 수준이 거의 회복되었다. 그러나, 반면에 다른 몇몇의 도시들에서는 주택시장이 침체에서 벗어나지 못한 채 회복기 이후에도 계속 하락하는 추세를 보였다. 이러한 격차는 주택 매매 가격뿐만 아니라 주택 전세 가격에도 뚜렷이 나타났다. 특히, 수도권 일대의 전세가격 상승 정도는 주택 시장 침체기에 나타났던 하락을 상회하였고, 일부 지역의 재개발 계획과 그에 대한 기대 심리로 인해 전세 수요의 급증을 초래하기도 하였다. 결과적으로 금융위기에 따른 경제 침체기를 경험하고 극복하는 과정에서 도시간 주택 시장의 격차는 더 크게 벌어지게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.