• Title/Summary/Keyword: marine traffic conditions

Search Result 65, Processing Time 0.028 seconds

A Study on Human Factor for Port State Control System (항만국통제제도에 대한 인적요인 연구)

  • Lee, Yun-Cheol;Kim, Jin-Kwon;Jeon, Hae-Dong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.108-109
    • /
    • 2005
  • The aim of Port State Control(PSC) system is recognized as a proficient mechanism in preventing coastal traffic accident and protecting marine environment. Recently, PSC system is focused on human factor of International Maritime Convention, especially ILO and STCW Convention by considering many accidents resulted from human factor. Therefore, we have to understand of Consolidated Maritime Labour Convention which describes employment conditions and social welfare policy, the rights about the lowest wages, the overdue wages, the unemployment protection. a disaster reward, etc and STCW Convention which describes standards of training, certification and watchkeeping for seafarers. The aim of this study is to recognize inspection points about human factor of these Conventions. .

  • PDF

Collision risk assessment based on the vulnerability of marine accidents using fuzzy logic

  • Hu, Yancai;Park, Gyei-Kark
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.541-551
    • /
    • 2020
  • Based on the trend, there have been numerous researches analysing the ship collision risk. However, in this scope, the navigational conditions and external environment are ignored or incompletely considered in training or/and real situation. It has been identified as a significant limitation in the navigational collision risk assessment. Therefore, a novel algorithm of the ship navigational collision risk solving system has been proposed based on basic collision risk and vulnerabilities of marine accidents. The vulnerability can increase the possibility of marine collision accidents. The factors of vulnerabilities including bad weather, tidal currents, accidents prone area, traffic congestion, operator fatigue and fishing boat operating area are involved in the fuzzy reasoning engines to evaluate the navigational conditions and environment. Fuzzy logic is employed to reason basic collision risk using Distance to Closest Point of Approach (DCPA) and Time of Closest Point of Approach (TCPA) and the degree of vulnerability in the specific coastal waterways. Analytical Hierarchy Process (AHP) method is used to obtain the integration of vulnerabilities. In this paper, vulnerability factors have been proposed to improve the collision risk assessment especially for non-SOLAS ships such as coastal operating ships and fishing vessels in practice. Simulation is implemented to validate the practicability of the designed navigational collision risk solving system.

A Study on the Selection of VTS Marine Incident Classification Criteria at the Busan Port (VTS 관점의 준해양사고 분류기준 선정에 관한 연구 - 부산항을 대상으로 -)

  • Ha, Jong-Min;Park, Young-Soo;Park, Sang-Won;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.615-623
    • /
    • 2020
  • In order to prevent the dangers of major marine accidents, it is very important to be aware of in advance through marine incidents in the background of Heinrich's law, formulated by the safety pioneer who is credited with focusing on workplace safety with emphasis on the human element. At least 11 cases of collision accidents occurred in the Busan VTS area from January 1st to December 31st, 2019, and 24 cases of VTS marine incidents were reported during the same period. According to Heinrich's law, there could be many more potentially risky situations besides the 24 reported cases. In this study, the criteria for VTS marine incidents were established through advanced research and a survey of VTS operators, and analysis of 24 cases of VTS marine incidents in the Busan VTS area. Traffic surveys were conducted for three days to identify potentially hazardous situations. According to the survey, there were 216 cases of VTS marine incidents, and within a year, it is estimated there could be about 26,280 cases. Even if conditions such as "missing VHF communication feedback" which is an important cause of marine incidents, are not reflected, there are many potential risks in the VTS area. Thus, it is vital to strengthen the VTS marine incident reporting system.

A Study on Safe Vessel Traffic Speeds Based On a Ship Collision Energy Analysis at Incheon Bridge (인천대교 선박 충돌에너지 분석을 통한 선박의 통항안전 속력에 관한 연구)

  • Lee, Chang-Hyun;Lee, Hong-Hoon;Kim, Deun-Bong;Kim, Chol-Seong;Park, Seong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.593-599
    • /
    • 2016
  • Incheon Bridge is 13.38 km long with an 800 m span, connecting Incheon International Airport and Songdo International City, Per hour 73.8 vessels navigate this space. The purpose of this study was to suggest a safe passing speed based on the displacement of a vessel based on the safety criteria of Incheon Bridge's anti-collision fence, which was designed during its initial construction. As AASHTO LRFD suggested, vessel collision energy, vessel collision velocity, and the hydrodynamic mass coefficient were considered to derive a safe vessel traffic speed. Incheon Bridge's anti-collision fence was designed so that 100,000 DWT vessels can navigate at a speed of 10 knot. This research suggests a safe speed for vessel traffic through a comparative analysis of an experimental ship's (300,000 DWT) speed and cargo conditions, regulation speed has been calculated according to the collision energy under each set of conditions. Additionally, safe traffic vessel's safe speed was analyzed with reference to tidal levels. Results from the experimental ship showed that a vessel of maximum 150,000 DWT is able to pass Incheon Bridge at a maximum of 7 knots with an above average water level, and is able to pass the bridge with a maximum of 8 knots under ballast conditions.

A study on northern sea route navigation using ship handling simulation

  • Kim, Won Ouk;Youn, Dae Gwun;Lee, Young Chan;Han, Won Heui;Kim, Jong Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1044-1048
    • /
    • 2015
  • Recently, the viability of the Northern Sea Route has been receiving a remarkable amount of attention. Owing to global warming, glaciers in the Arctic Ocean have been melting rapidly, which has opened up navigation routes for ships with commercial as well as research purposes. At present, vessels can be economically operated along the Northern Sea Route four months of the year. However, studies have shown that the economical operating time may increase to six months by 2020 and year-round by 2030. Even though the conditions of the Northern Sea Route are extreme, the main reason for its use is that the route is shorter than the existing route using the Suez Canal, which provides an economic benefit. In addition, 25% of the world's oil reserves and 30% of its natural gas are stored in the coastal areas of the East Siberian Arctic region. Many factors are leading to the expectation of commercial navigation using the Northern Sea Route in the near future. To satisfy future demand, the International Maritime Organization established the Polar Code in order to ensure navigation safety in polar waters; this is expected to enter into force on January 1, 2017. According to the code, a ship needs to reduce its speed and analyze the ice for safe operation before entering into it. It is necessary to enter an ice field at a right angle to break the ice safely and efficiently. This study examined the operation along the course for safe navigation of the passage under several conditions. The results will provide guidelines for traffic officers who will operate ships in the Arctic Ocean.

Improvement of Navigation Lights of Middle and Small Size Ships for Marine Traffic Safety in Coastal Areas of Korea (연안 해상교통안전을 위한 중소형선 항해등 개선방안)

  • Song-Jin Na
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1129-1139
    • /
    • 2022
  • Collision accidents happen frequently. The majority of ships involved in collisions in the coastal areas of Korea are middle and small size ships. The proportion of collision accidents is only 9% of all types of marine accidents; however, the number of casualties resulting from collisions is 34.4% of all human life damages. Generally, as reported by the people involved in these collisions, the navigation lights of the opponent ships were poor and invisible when the accident happened even though the weather and visibility were good. Furthermore, there are many insistences for poor navigation light conditions of the opponent ship in the bay or harbor. Therefore, it is necessary to analyze the present conditions and safety of navigation lights. Therefore, in this study, we examined the rules and books of navigation lights and compared it to that of other transportation systems, such as aircraft, trains, and road vehicles. Furthermore, we analyzed the current marine traf ic circumstances and ship collision accidents that happened in the past 5 years. Additionally, a questionnaire was prepared to gather the opinion of ship experts and secure the objectivity for improvement methods of navigation lights. Finally, methods to improve the navigation lights on ships were devised.

Development of IoT-Based Disaster Information Providing Smart Platform for Traffic Safety of Sea-Crossing Bridges (해상교량 통행안전을 위한 IoT 기반 재난 정보 제공 스마트 플랫폼 개발)

  • Sangki Park;Jaehwan Kim;Dong-Woo Seo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.105-113
    • /
    • 2023
  • Jeollanam-do has 25 land-to-island and island-to-island bridges, the largest number in Korea. It is a local government rich in specialized marine and tourism resources centered on the archipelago and the sea bridges connecting them. However, in the case of sea-crossing bridges, when strong winds or typhoons occur, there is an issue that increases anxiety among users and local residents due to excessive vibration of the bridge, apart from structural safety of the bridge. In fact, in the case of Cheonsa Bridge in Shinan-gun, which was recently opened in 2019, vehicle traffic restrictions due to strong winds and excessive vibrations frequently occurred, resulting in complaints from local residents and drivers due to increased anxiety. Therefore, based on the data measured using IoT measurement technology, it is possible to relieve local residents' anxiety about the safety management of marine bridges by providing quantitative and accurate bridge vibration levels related to traffic and wind conditions of bridges in real time to local residents. This study uses the existing measurement system and IoT sensor to constantly observe the wind speed and vibration of the marine bridge, and transmits it to local residents and managers to relieve anxiety about the safety and traffic of the sea-crossing bridge, and strong winds and to develop technologies capable of preemptively responding to large-scale disasters.

A Study on the Minimum Safe Distance Index of Filipino Navigators in the Vicinity of Obstacles and in Adverse Weather Conditions

  • Dimailig, Orlando S.;Jeong, Jae-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.250-257
    • /
    • 2017
  • This paper investigates minimum safe distances relative to a ship's four cardinal sides, as perceived by Filipino navigators when encountering dangerous elements and in adverse weather conditions when maneuvering in and around harbors. It uses a descriptive research method in the form of a questionnaire survey for experienced Filipino navigators of various ranks. During the course of research, 71 responses were colleted and the resulting data is presented in graphical and tabulated forms. Statistical methods including Pearson-product moment correlations, Cronbach's Alpha and ANOVA were used to identify internal associations, consistencies and significances, respectively. It has been proven that there are no significant differences in minimum safe distances relative to a ship's four cardinal sides, whether maneuvering while approaching a port or within an inner harbor. This study has been deemed significant for training future navigators, managing traffic in fairways, and designing harbors and maneuvering areas in the approaches to ports, among other applications. This work can also be used as a preliminary study for comparison with the well known safe domains presently in use.

Effects of micromechanical models on the dynamics of functionally graded nanoplate

  • Tao Hai;A. Yvaz;Mujahid Ali;Stanislav Strashnov;Mohamed Hechmi El Ouni;Mohammad Alkhedher;Arameh Eyvazian
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.191-206
    • /
    • 2023
  • The present research investigates how micromechanical models affect the behavior of Functionally Graded (FG) plates under different boundary conditions. The study employs diverse micromechanical models to assess the effective material properties of a two-phase particle composite featuring a volume fraction of particles that continuously varies throughout the thickness of the plate. Specifically, the research examines the vibrational response of the plate on a Winkler-Pasternak elastic foundation, considering different boundary conditions. To achieve this, the governing differential equations and boundary conditions are derived using Hamilton's principle, which is based on a four-variable shear deformation refined plate theory. Additionally, the Galerkin method is utilized to compute the plate's natural frequencies. The study explores how the plate's natural frequencies are influenced by various micromechanical models, such as Voigt, Reuss, Hashin-Shtrikman bounds, and Tamura, as well as factors such as boundary conditions, elastic foundation parameters, length-to-thickness ratio, and aspect ratio. The research results can provide valuable insights for future analyses of FG plates with different boundaries, utilizing different micromechanical models.

Development of a Collision Risk Assessment System for Optimum Safe Route (최적안전항로를 위한 충돌위험도 평가시스템의 개발)

  • Jeon, Ho-Kun;Jung, Yun-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.670-678
    • /
    • 2018
  • In coastal waters where the traffic volume of the ship is high, there is a high possibility of a collision accident because complicated encounter situations frequently occurs between ships. To reduce the collision accidents at sea, a quantitative collision risk assessment is required in addition to the navigator's compliance with COLREG. In this study, a new collision risk assessment system was developed to evaluate the collision risk on ship's planned sailing routes. The appropriate collision risk assessment method was proposed on the basis of reviewing existing collision risk assessment models. The system was developed using MATLAB and it consists of three parts: Map, Bumper and Assessment. The developed system was applied to the test sea area with simple computational conditions for testing and to actual sea areas with real computational conditions for validation. The results show the length of own ship, ship's sailing time and sailing routes affect collision risks. The developed system is expected to be helpful for navigators to choose the optimum safe route before sailing.