• Title/Summary/Keyword: marine environment exposure

Search Result 176, Processing Time 0.115 seconds

Evaluation of Durability of Slag Concrete by Marine Environment Exposure (해양환경 폭로에 의한 슬래그 콘크리트의 내구성 평가)

  • Kim, Hyun-Jin;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Bo-Kyeong;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.111-112
    • /
    • 2015
  • There is high possibility of steel corrosion on the reinforced concrete exposed to marine environment by chloride ion penetration. And it show a big difference of concrete durability under conditions of splash zone, tidal zone, and immersion zone. Therefore, in this paper, half-cell potential and chloride ion penetration depth was measured to evaluate the durability of slag concrete by marine exposure experiment. As a result, SC70 specimen showed no steel corrosion, regardless of the marine exposed conditions. Also, a deterrent effect on chloride ion penetration by replacement of slag in tidal zone and immersion zone could be confirmed.

  • PDF

Cu Accumulation and Elimination in the Tissues of the Olive Flounder Paralichthys olivaceus

  • Kim, Seong-Gil;Jang, Seok-Woo;Lee, Young-Ju;Kim, Seong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Olive flounder, Paralichthys olivaceus were exposed to waterborne Cu (control, 50, 80, 150, and 320 ${\mu}g$/L) for 30 days and then depurated for 20 days to investigate the effects of waterborne Cu exposure on growth, accumulation, and elimination. The weight-specific growth rate was significantly negatively related to waterborne Cu concentrations at 150 and 320 ${\mu}g$/L. The order of Cu accumulation in different tissues of exposed fish was liver>intestines>gills>kidneys>muscle, suggesting that the liver is more important than other tissues for the storage of Cu in olive flounder. The accumulation factor for the gills, intestines, liver, and muscle increased with increasing exposure time, and accumulation was negatively related to exposure concentration for the gills, kidneys, and muscle. Cu concentrations in the gills, intestines, and liver continuously decreased for 20 days of depuration. The fastest elimination rate occurred in the intestines at all exposure concentrations, and the order of Cu elimination in the different tissues was intestines>liver>gills.

Experimental study on durability of strengthened corroded RC columns with FRP sheets in tidal zone of marine environment

  • Kashi, Amin;Ramezanianpour, Ali Akbar;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The main objective of this paper was to illuminate the effect of marine environmental condition on durability of reinforced concrete (RC)-corroded columns strengthened with carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) layers. Small-scale columns were prepared and corroded by an accelerated corrosion process. After strengthening, compressive strength tests were carried out on control and weathered specimens. In this research, a marine simulator was designed and constructed similar to the tidal zone of marine environment in south of Iran which was selected as a case study in this research. Mechanical properties of wrapped specimens were studied after placing them inside the simulator for 3000 hours. Marine environment decreased ultimate strength by 4.5% and 26.3% in CFRP and GFRP-wrapped columns, respectively. In some corroded-columns, strengthening was carried out after replacing damaged cover by self-compacted mortar. In this method, by confining with one layer of CFRP and GFRP, 4.2% and 22.4% reduction in ultimate strength was observed, respectively, after exposure. Furthermore, the elastic-brittle behavior has been verified in this retrofit method. Also results of tension tests revealed, the ultimate tensile strength was degraded by 2% and 28.8% in CFRP and GFRP sheets, respectively, after applying marine exposure.

Initial Stage of Atmospheric Corrosion of Carbon and Weathering Steels in Thailand Climate

  • Nii, K.;Bhamornsut, C.;Chotimongkol, L.;Vutivat, E.;Nakkhuntod, R.;Jeenkhajohn, P.;Suphonlai, S.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.183-188
    • /
    • 2003
  • Corrosion of carbon and weathering steels were evaluated under 3 environmental exposures in Thailand (urban, rural and marine) for a year. The seasonal study was designed to determine different corrosion mechanisms by 6 months of dry season and 6 months of rainy season in a year. The sheltered exposure racks were used to determine the washing effect of min. At each site, climatic and pollutants analyses were carried out. The present study showed that the difference in corrosion rates of carbon and weathering steels was not so distinguished in both rural (AIT) and urban (TISTR) environments. The corrosion rate of weathering steel was somewhat lower than that of carbon steel and the decreasing tendency of corrosion rate with time was slightly higher for weathering steel than for carbon steel. In marine (Rayong) environment, the corrosion rate was higher and the effect of wet and dry seasons was observed. The corrosion rate in 6 dry months was higher for direct exposure than for sheltered exposure. However, in 6 rainy months. the corrosion rate of sheltered exposure was higher than that of direct exposure. In direct exposure for I year, that is, the first 6 dry months and the next 6 rainy months, the corrosion rate decreased with time. but in sheltered exposure, the corrosion rate did not decrease with time. instead, increased in the next 6 rainy months. This indicated that the protect ive layer formed in the first 6 dry months could be destroyed by high deposition of chloride to r sheltered exposure in the next 6 rainy months; whereas the rust layer for direct exposure could be kept sound due to washing effect in rainy season, even though the deposition rate of chloride was almost the same for direct and sheltered exposures. In marine environment, the weathering steel showed higher corrosion resistance than carbon steel but its corrosion rate was higher than those in other environments.

Hematological constituents and ultrastructural changes in dark-banded rockfish, Sebastes inermis, under nitrite stress

  • Park, In-Seok;Goo, In Bon;Kim, Young Ju;Choi, Jae Wook;Oh, Ji Su
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The acute toxicity and sublethal effects of nitrite on the dark-banded rockfish, Sebastes inermis (mean body weight: $83.3{\pm}7.2$ g), were studied under static conditions for a period of 96 h. The acute toxicity of nitrite was at the 50% lethal concentration ($LC_{50}$) of 700 mg/L. The sublethal effects on selected hematological parameters of the dark-banded rockfish, such as its osmolality, hematocrit, cortisol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), were measured after 0, 6, 12, 24, 48, 72, and 96 h of exposure to 0, 50, 100, 200, 400, or 700 mg/L nitrite. Sublethal nitrite caused a progressive reduction in the hematocrit of the fish, depending on the nitrite concentration and the exposure period. Exposure to 100-700 mg/L nitrite for 96 h caused a reduction in the hematocrit and an increase in cortisol, ALT, and AST compared with the control levels. Abnormal ultrastructural changes in the gills and liver tissues were observed in fish exposed to 700 mg/L nitrite for up to 96 h compared with the control tissues. Ultrastructural changes included atrophic gill mitochondria and hepatocytes that developed smooth endoplasmic reticulum and atrophic mitochondria. Although no rockfish mortality occurred at 500 mg/L nitrite, all the hematological parameters examined responded adversely to a nitrite dose of 200 mg/L for 96 h. These results show that although the acute toxic concentration of nitrite for the dark-banded rockfish is > 700 mg/L, sublethal concentrations of nitrite also negatively affect its hematological parameters.

An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Environment (해양환경에 노출시킨 콘크리트의 내염성능 평가)

  • Ko Jeong-Jae;Kim Young-Ung;Kim Dong-Chul;Shin Do-Chul;Kim Sang-Yong;Byun Dae-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.790-793
    • /
    • 2004
  • The factors influencing concrete deterioration in marine environment can be generally divided into the physical and chemical action. The physical attack due to drying and wetting would increase the internal stress of concrete. The chemical attack resulting from the diffusion of ions$(i,e,\;Cl^-,SO_4^{2-},Mg^+)$ from seawater through the pores in concrete. The objective of this study is to evaluate corrosion characteristics of steel when using the various concrete materials under marine exposure environment. After 3 years of exposure, concrete specimen incorporating $40\%$ blast-furnace slag as replacement for type I cement with low w/c ratio of 0.42 and using the inhibitor shows excellent performance.

  • PDF

An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Environment (Exposure period : 5 years) (해양환경에 폭로한 콘크리트의 내염특성에 대한 실험적 연구 (폭로기간 : 5년))

  • Kim, Yong-Chul;Suk, Jun-Yeoll;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.169-172
    • /
    • 2006
  • The IIA structures exposed to marine environment is subject to many different types of potential attack. The physical attack due to drying and wetting would increase the internal stress of concrete. The chemical attack resulting from the diffusion of ions$(Cl^-,SO_4^{2-},Mg^+)$ from seawater through the pores in concrete. Therefore the sea water resistance of concrete must be considered when it is used for structure in the ocean. The objective of this study is to evaluate chloride diffusion and corrosion characteristics of concrete when using the various concrete materials under marine environment. After 5 years of exposure, concrete incorporating 40% blast-furnace slag as replacement for type I cement with low w/c ratio of 0.42 and using the inhibitor shows excellent performance.

  • PDF

Development of a Machine Learning-Based Model for the Prediction of Chloride Diffusion Coefficient Using Concrete Bridge Data Exposed to Marine Environments (기계학습 기반 해양 노출 환경의 콘크리트 교량 데이터를 활용한 염화물 확산계수 예측모델 개발)

  • Woo-Suk Nam;Hong-Jae Yim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.20-29
    • /
    • 2024
  • The chloride diffusion coefficient is a critical indicator for assessing the durability of concrete marine substructures. This study develops a prediction model for the chloride diffusion coefficient using data from concrete bridges located in marine exposure zones (atmospheric, splash, tidal), an aspect that has not been considered in previous studies. Chloride profile data obtained from these bridge substructures were utilized. After data preprocessing, machine learning models, including Random Forest (RF), Gradient Boosting Machine (GBM), and K-Nearest Neighbors (KNN), were optimized through hyperparameter tuning. The performance of these models was developed and compared under three different variable sets. The first model uses six variables: water-to-binder (W/B) ratio, cement type, coarse aggregate volume ratio, service life, strength, and exposure environment. The second model excludes the exposure environment, using only the remaining five variables. The third model relies on just three variables: service life, strength, and exposure environment factors that can be obtained from precision safety diagnostics. The results indicate that including the exposure environment significantly enhances model performance for predicting the chloride diffusion coefficient in concrete bridges in marine environments. Additionally, the three variable model demonstrates that effective predictions can be made using only data from precision safety diagnostics.

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

Heterologous Microarray Hybridization Used for Differential Gene Expression Profiling in Benzo[a]pyrene-exposed Marine Medaka

  • Woo, Seon-Ock;Won, Hyo-Kyoung;Jeon, Hye-Young;Kim, Bo-Ra;Lee, Taek-Kyun;Park, Hong-Seog;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • Differential gene expression profiling was performed in the hepatic tissue of marine medaka fish (Oryzias javanicus) after exposure to benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), by heterologous hybridization using a medaka cDNA microarray. Thirty-eight differentially expressed candidate genes, of which 23 were induced and 15 repressed (P<0.01), were identified and found to be associated with cell cycle, development, endocrine/reproduction, immune, metabolism, nucleic acid/protein binding, signal transduction, or non-categorized. The presumptive physiological changes induced by BaP exposure were identified after considering the biological function of each gene candidate. The results obtained in this study will allow future studies to assess the molecular mechanisms of BaP toxicity and the development of a systems biology approach to the stress biology of organic chemicals.