DOI QR코드

DOI QR Code

Hematological constituents and ultrastructural changes in dark-banded rockfish, Sebastes inermis, under nitrite stress

  • Park, In-Seok (Division of Marine Environment and Bioscience, Korea Maritime University) ;
  • Goo, In Bon (Division of Marine Environment and Bioscience, Korea Maritime University) ;
  • Kim, Young Ju (Division of Marine Environment and Bioscience, Korea Maritime University) ;
  • Choi, Jae Wook (Division of Marine Environment and Bioscience, Korea Maritime University) ;
  • Oh, Ji Su (Division of Marine Environment and Bioscience, Korea Maritime University)
  • Received : 2012.12.06
  • Accepted : 2013.04.03
  • Published : 2013.04.30

Abstract

The acute toxicity and sublethal effects of nitrite on the dark-banded rockfish, Sebastes inermis (mean body weight: $83.3{\pm}7.2$ g), were studied under static conditions for a period of 96 h. The acute toxicity of nitrite was at the 50% lethal concentration ($LC_{50}$) of 700 mg/L. The sublethal effects on selected hematological parameters of the dark-banded rockfish, such as its osmolality, hematocrit, cortisol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), were measured after 0, 6, 12, 24, 48, 72, and 96 h of exposure to 0, 50, 100, 200, 400, or 700 mg/L nitrite. Sublethal nitrite caused a progressive reduction in the hematocrit of the fish, depending on the nitrite concentration and the exposure period. Exposure to 100-700 mg/L nitrite for 96 h caused a reduction in the hematocrit and an increase in cortisol, ALT, and AST compared with the control levels. Abnormal ultrastructural changes in the gills and liver tissues were observed in fish exposed to 700 mg/L nitrite for up to 96 h compared with the control tissues. Ultrastructural changes included atrophic gill mitochondria and hepatocytes that developed smooth endoplasmic reticulum and atrophic mitochondria. Although no rockfish mortality occurred at 500 mg/L nitrite, all the hematological parameters examined responded adversely to a nitrite dose of 200 mg/L for 96 h. These results show that although the acute toxic concentration of nitrite for the dark-banded rockfish is > 700 mg/L, sublethal concentrations of nitrite also negatively affect its hematological parameters.

Keywords

References

  1. Alcaraz, G. and S. Espina. 1997. Scope for growth of juvenile grass carp, Ctenopharyngodon idella exposed to nitrite. Comp. Biochem. Physiol. 116:85-88.
  2. Alcaraz, G., X. Chiappa-Carrara and C. Vanegas. 1997. Temperature tolerance of Penaeus setiferus postlarvae exposed to ammonia and nitrite. Aquat. Toxicol. 39:345-353. https://doi.org/10.1016/S0166-445X(96)00852-1
  3. Almendras, J. M. E. 1987. Acute nitrite toxicity and methemoglobinemia in juvenile milkfish, Chanos chanos Forsskal. Aquaculture 61:33-40. https://doi.org/10.1016/0044-8486(87)90335-8
  4. Barton, B.A. and G.K. Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  5. Choi, H. J., K.-P. Hong, C. H. Noh, Y. J. Park, J. G. Myoung, J. M. Kim, J. W. Hur, C. I. Zhang, and I.-S. Park. 2005. Growth characteristics of cultured dark-banded rockfish, Sebastes inermis Cuvier. J. Aquacult. 18:147-153.
  6. Choi, Y., J. H. Kim and J. Y. Park. 2002. Marine Fishes of Korea. Kyo-Hak Pubulishing Co., Ltd., Seoul. 645 pp.
  7. Costa, O. T. F., D. J. S. Ferreira, F. L. P. Mendonca, and M. N. Fernandes. 2004. Susceptibility of the Amazonian fish, Colossoma macropomum (Serrasalminae), to short-term exposure to nitrite. Aquaculture 232:627-636. https://doi.org/10.1016/S0044-8486(03)00524-6
  8. Das, P. C., S. Ayyappan, J. K. Jena and B. K. Das. 2004. Nitrite toxicity in Cirrhinus mrigala (Ham): acute toxicity and sub-lethal effect in selected haematological parameters. Aquaculture 235:633-644. https://doi.org/10.1016/j.aquaculture.2004.01.020
  9. Doblander, C. and R. Lackner. 1997. Oxidation of nitrite to nitrate in isolated erythrocytes: a possible mechanism for adaptation to environmental nitrite. Can. J. Fish. Aquat. Sci. 54:157-161.
  10. Donaldson, E.M. 1981. The pituitary-interrenal axis as an indicator of stress in fish. In: Stress in fish. ed. By A.D. Pickering. Academic Press, London. p. 11.
  11. Eddy, F. B. and E. M. Williams. 1987. Nitrite and freshwater fish. J. Chem. Ecol. 3:1-38. https://doi.org/10.1080/02757548708070832
  12. Eddy, F. B., P. A. Kunzlikand R. N. Bath. 1983. Uptake and loss of nitrite from the blood of rainbow trout, Salmo gairdnery Richardson, and Atlantic salmon, Salmo salar L. in fresh water and in dilute sea water. J. Fish Biol. 23:105-116. https://doi.org/10.1111/j.1095-8649.1983.tb02885.x
  13. Grosell, M. and F. B. Jensen. 1999. $NO_{2}$uptake and $HCO_{3}$ excretion in the intestine of the European flounder, Platichthys flesaus. J. Exp. Biol. 202:2103-2110.
  14. Hilmy, A. M., N. A. El-Domiaty and K.Wershana. 1987. Acute and chronic toxicity of nitrite to Clarias lazera. Comp. Biochem. Physiol. 86:247-253.
  15. Huertas, M., E. Gisbert, A. Rodniguez, L. Cardona, P. Williot and F. Castello-Orvay. 2002. Acute exposure of Siberian sturgeon, Acipenser baeri Brandt, yearlings to nitrite: median-lethal concentration $(LC_{50})$ determination, haematological changes and nitrite accumulation in selected tissues. Aquat. Toxicol. 57:257-266. https://doi.org/10.1016/S0166-445X(01)00207-7
  16. Hugla, J. L. and J. P. Thome. 1999. Effects of polychlorinated biphenyls on liver ultrastructure, hepatic monooxygenases, and eproductive success in the barbel. Ecotoxicol. Environ. Saf. 42:265-273. https://doi.org/10.1006/eesa.1998.1761
  17. Jensen, F. B. 1990. Nitrite and red cell function in carp: control factors for nitrite entry, membrane potassium ion permeation, oxygen affinity and methaemoglobin formation. J. Exp. Biol. 152:149-166.
  18. Jensen, F. B. 1992. Influence of haemoglobin conformation, nitrite and eicosanoids on $K^{+}$ transport across the carp red blood cell membrane. J. Exp. Biol. 171:349-371.
  19. Jensen, F. B. 2003. Nitrite disrupts multiple physiologica functions in aquatic animals. Comp. Biochem. Physiol. 135:9-24.
  20. Knudsen, P. K. and F. B. Jensen. 1997. Recovery from nitrite-induced methaemoglobinemia and potassium balance disturbances in carp. Fish Physiol. Biochem. 16:1-10. https://doi.org/10.1007/BF00004535
  21. Lewis, W. M., Jr. and D. P. Morris. 1986. Toxicity of nitrite to fish: a review. Trans. Am. Fish. Soc. 115:183-195. https://doi.org/10.1577/1548-8659(1986)115<183:TONTF>2.0.CO;2
  22. Mallat, J. 1985. Fish gill structural changes induced by toxicants and other irritants: A statistical review. Can. J. Fish. Aquat. Sci. 42:630-648. https://doi.org/10.1139/f85-083
  23. Martinez, C. B. R. and M. M. Souza. 2002. Acute effects of nitrite on ion regulation in two neotropical fish species. Comp. Biochem. Physiol. 133:151-160. https://doi.org/10.1016/S1095-6433(02)00144-7
  24. Park, I. -S., J. H. Lee, J. -W. Hur, Y. -C. Song, H. C. Na and C. H. Noh. 2007. Acute toxicity and sublethal effects of nitrite on selected hematological parameters and tissues in dark-banded rockfish, Sebastes inermis. J. World Aquac. Soc. 38:188-199. https://doi.org/10.1111/j.1749-7345.2007.00088.x
  25. Perrone, S. J. and T. L. Meade. 1977. Protective effect of chloride on nitrite toxicity to coho salmon, Oncorhynchus kisutch. Can. J. Fish. Aquat. Sci. 34:486-492.
  26. Reddy, D. C., P. Vijayakumari, V. Kalarani and R.W. Davies. 1992. Changes in erythropoietic activity of Sarotherodon mossambicus exposed to sublethal concentrations of the herbicide diuron. Bull. Environ. Contam. Toxicol. 9:730-737.
  27. Rim, S. C., C. K. Choi and K. H. You. 1978. Ultrastructure and accumulation of heavy metals in Artemia salina polluted by them in environment. J. Nat. Sci. Res. Ins. 2:45-58.
  28. Tomasso, J. R. 1994. Toxicity of nitrogenous wastes to aquaculture animals. Rev. Fish. Sci. 2:291-314. https://doi.org/10.1080/10641269409388560
  29. Williams, E. M. and F. B. Eddy. 1986. Chloride uptake in freshwater teleosts and its relationship to nitrite uptake and toxicity. J. Comp. Physiol. 156:867-872. https://doi.org/10.1007/BF00694263