• Title/Summary/Keyword: marine cyanobacteria

Search Result 43, Processing Time 0.022 seconds

16S rRNA Gene Sequence-based Microbial Diversity Analyses of the Geothermal Areas of Cisolok, Kamojang, and Likupang in Indonesia (16S rRNA 분석을 통한 인도네시아의 Cisolok, Kamojang, Likupang 지열지대 내 미생물 다양성 분석)

  • Seo, Myung-Ji;Kim, Jeong-Nyeo;Pyun, Yu-Ryang
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.268-273
    • /
    • 2012
  • Microbial diversity analyses were performed in several geothermal areas in Indonesia using a culture-independent approach with 16S rRNA gene sequencing. All areas and the majority of samples were noted as being affiliated with Proteobacteria. In addition, unclassified bacteria with no phylum affiliation were detected at an incidence rate of 20.0-26.5% in every location. The majority groupings in the geothermal hot stream in Cisolok belonged to ${\beta}$-Proteobacteria (27.1%) and Cyanobacteria (11.0%), whereas the majority from the volcanic area in Kamojang was ${\gamma}$-Proteobacteria (51.5%) followed by Aquificales (12.9%). The predominant groups around an underwater thermal vent in the sea at Likupang were ${\gamma}$-Proteobacteria (33.3%) and then Bacteroidetes (27.6%). This detailed microbial community analyses of each area strongly support a possible association with plausible community groups and environmental habitats, such as extremely geothermal or marine habitats. This study has significantly contributed to the expansion of scientific knowledge of the microbial community in Indonesia.

Synchronization of Cell Cycle in Korean Hydrogen Producing Cyanobacterial Strains (한국산 수소생산 남세균 종주들의 세포주기 동조화)

  • Park, Jong-Woo;Ahn, Se-Hee;Kim, Hyung-Seop;Yih, Won-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.663-670
    • /
    • 2011
  • Under a daily photoperiod of 14h light and 10h dark synchronization of cell cycle in Korean Cyanothece spp. strains and $Synechococcus$ sp. strain Miami BG043511 was analyzed as to be applicable to enhanced hydrogen production. For all strains peaks of double cell were observed during the light period of a daily cycle. Peaks of maximal cell size measured by a coulter counter appeared at the peak of double cells observed under light microscope reconfirming the synchronization of daily cell cycle. The cell cycle synchronization became weakened within two days when treated with continuous illumination. Rapid detection of the peak time of double cell percentage by coulter counters may contribute to quasi-realtime feedback control for efficient production of photobiological hydrogen by unicellular cyanobacterial strains.

New Algicidal Compounds from a Marine Algicidal Bacterium against Cochlodinium polykrikoides

  • Jeong, Seong-Yun;Kim, Min-Ju;Lee, Sang-Youb;Son, Hong-Joo;Lee, Sang-Joon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.285-289
    • /
    • 2006
  • In screening of algicidal bacteria, we isolated a marine bacterium which had potent algicidal effects on harmful algal bloom (HAB) species. This organism was identified as a strain very close to Bacillus subtilisby 16S rRNA gene sequencing. This bacterium, Bacillus sp. SY-1, produces very active algicidal compounds against the harmful dinoflagellate Cochlodinium polykrikoides. We isolated three algicidal compounds (MS 1056, 1070, 1084) and identified them by amino acid analyses, fast atom bombardment mass spectrometry (FAB-MS), infrared spectroscopy (IR), $^1H$, $^{13}C$, and extensive two-dimensional nuclear magnetic resonance (2D NMR) techniques including $^1H-^{15}N$ HMBC analysis. One of them, MS 1056, contains a b-amino acid residue with an alkyl side chain of $C_{15}$. MS 1056, 1070, and 1084 showed algicidal activities against C. polykrikoides with an $LC_{50}$ (6 hrs) of 2.3, 0.8, $0.6\;{\mu}g/ml$, respectively. These compounds also showed significant algicidal activities against other harmful dinoflagellates and raphidophytes. In contrast, MS 1084 showed no significant growth inhibition against various organisms coexisting with HAB species in natural environments, including bacteria, eukaryotic microalgae, and cyanobacteria, although it inhibited growth of some fungi and yeasts. These observations imply that algicidal bacterium Bacillus sp. SY-1 and its algicidal compounds could play an important role in regulating the onset and development of HABs in the natural environments.

  • PDF

Comparison of Microscopy and Pigment Analysis for Determination of Phytoplankton Community Composition: Application of CHEMTAX Program (식물플랑크톤 군집조성 파악을 위한 현미경관찰법과 지표색소분석법 비교 연구: CHEMTAX 프로그램 활용)

  • Kim, Dokyun;Choi, Jisoo;Oh, Hye-Ji;Chang, Kwang-Hyeon;Choi, Kwangsoon;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.303-314
    • /
    • 2021
  • To understand how to efficiently observe the biomass and community of phytoplankton, phytoplankton sampling was carried out from June to October 2019 at the Yeongju dam sediment control reservoir(YJ) and Bohyeonsan dam reservoir(BH1 and BH2). The results derived from microscopic observation, such as the conventional phytoplankton qualitative/quantitative analysis, and from the CHEMTAX method based on the pigments, were compared. The relative contribution of phytoplankton, calculated by the microscopy and CHEMTAX methods, showed a significant difference in all four classes: cryptophyta, chlorophyta, cyanobacteria, and diatoms. In addition, the correlation between the two observation methods was poor. This might be caused by methodological differences in microscopy that do not consider the varying cell sizes among phytoplankton species. In this study, by converting the cells into carbon, the slope between both carbon biomasses based on microscopy and CHEMTAX was improved close to the 1 : 1 line, and the y-intercept was closer to 0 for cryptophyta and diatoms. For cyanobacteria, the slope increased, the y-intercept decreased, and the plot approached 1 : 1 although the correlation coefficients were not improved in all classes. The present study suggests that application of CHEMTAX based on pigment analysis could be a possible approach to efficiently determine the relative carbon proportions of individual classes of phytoplankton community composition.

Comparison of Biomass Production of Spirulina (Arthrospira) platensis in Outdoor Culture Conditions Using Different Media by Urea Addition (실외 배양 조건에서 요소를 첨가한 배지 성분에 따른 Spirulina (Arthrospira) platensis의 성장 비교)

  • Lee, Dae-Won;Affan, MD Abu;Lee, Hyeon-Yong;Ma, Chae Woo;Park, Heung-Sik;Kwon, Moon-Sang;Kang, Do-Hyung
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.407-414
    • /
    • 2013
  • One of the most important challenges facing the Spirulina mass cultivation industry is to find a way to reduce the high production costs involved in production. Although the most commercial medium (Zarrouk's medium) for Spirulina cultivation is too expensive to use, it contains higher amount of $NaHCO_3$ (16.80 g $L^{-1}$), trace metals and vitamin solutions. The purpose of this study was to increase the efficiency of Spirulina platensis biomass production by developing a low-cost culture medium at an isolated tropical island such as Chuuk State, Federated States of Micronesia (FSM). This study set out to formulate a lowcost medium for the culture of S. platensis, by substituting nutrients of Zarrouk's medium using fertilizer- grade urea and soil extract with a different concentration of carbon source under natural weather condition. In order to select a low-cost culture medium of S. platensis, 10 culture media were prepared with different concentrations of nitrogen (urea and $NaNO_3$) and $NaHCO_3$. The highest maximum specific growth rate (${\mu}max$) and mass production were 0.50 $day^{-1}$ and 1.05 g $L^{-1}$ in modified medium ($NaHCO_3$ 7.50 g $L^{-1}$, urea 2.00 g $L^{-1}$ without $NaNO_3$) among all the synthesized media. Protein (56.14%) and carbohydrate (16.21%) concentrations of the lyophilized standard samples were estimated with highest concentration of glutamic acid (14.93%). This study revealed that the use of a low concentration of urea and $NaHCO_3$ with soil extract was an affordable medium for natural mass cultivation in the FSM.

A Protocol of Ludox Treatment for Physiological and Molecular Biological Research of Freshwater Cyanobacteria (퇴적층 남조류 휴면세포의 생리적-분자생물학적 연구를 위한 Ludox 처리법)

  • Keonhee Kim;Kyeong-eun Yoo;Hye-in Ho;Chaehong Park;Hyunjin Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.94-103
    • /
    • 2023
  • Cyanobacterial resting cells, such as akinetes, are important seed cells for cyanobacteria's early development and bloom. Due to their importance, various methods have been attempted to isolate resting cells present in the sediment. Ludox is a solution mainly used for cell separation in marine sediments, but finding an accurate method for use in freshwater is difficult. This study compared the two most commonly used Ludox methods (direct sediment treatment and sediment distilled water suspension treatment). Furthermore, we proposed a highly efficient method for isolating cyanobacterial resting cells and eDNA amplification from freshwater sediments. Most of the resting cells found in the sediment were akinete to the Nostocale and were similar to those of Dolichospermum, Cylindrospermum, and Aphanizomenon. Twenty times more akinetes were found in the conical tube column using the sediment that had no treatment than in the sample treated by suspending the sediment in distilled water. Akinete separated through Ludox were mainly spread over the upper and lower layers in the column rather than concentrated at a specific depth in the column layer. The mibC, Geo, and 16S rDNA genes were successfully amplified using the sediment directly in the sample. However, the amplification products of all genes were not found in the sample in which the sediment was suspended in distilled water. Therefore, 5 g to 10 g of sediment is used without pretreatment when isolating cyanobacterial resting cells from freshwater sediment. Cell isolation and gene amplification efficiency are high when four times the volume of Ludox is added. The Ludox treatment method presented in this study isolates cyanobacterial resting cells in freshwater sediment, and the same efficiency may not appear in other biotas. Therefore, to apply Ludox to the separation of other biotas, it is necessary to conduct a pre-experiment to determine the sediment pretreatment method and the water layer where the target organism exists.

Upregulation of thiamine (vitamin B1) biosynthesis gene upon stress application in Anabaena sp. and Nannochloropsis oculata

  • Fern, Lee Li;Abidin, Aisamuddin Ardi Zainal;Yusof, Zetty Norhana Balia
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.462-471
    • /
    • 2017
  • Thiamine pyrophosphate (TPP), the active form of thiamine is a cofactor for enzymes involved in central metabolism pathways. However, it is also known to have a role as a stress signaling molecule in response to environmental changes. Anabaena sp. and N. oculata are microorganisms which are abundantly found in Malaysia's freshwater and marine ecosystem. However, not much studies have been done especially in regards to thiamine biosynthesis. This work aimed to amplify of gene transcripts coding for thiamine biosynthesis enzymes besides looking at the expression of thiamine biosynthesis genes upon stress application. Various stress inducers were applied to the cultures and RNA was extracted at different time points. The first two genes, ThiC and ThiG/Thi4 encoding enzymes of the pyrimidine and thiazole branch respectively in the thiamine biosynthesis pathway were identified and amplified. The expression of the genes were analysed via RT-PCR and the intensity of bands were analysed using ImageJ software. The results showed up to 4-fold increase in the expression of ThiC and ThiG gene transcript as compared to control sample in Anabaena sp. ThiC gene in N. oculata showed an expression of 6-fold higher as compared to control sample. In conclusion, stresses induced the expression of the gene coding for one of the most important enzymes in thiamine biosynthesis pathway. This is an agreement with the hypothesis that overexpression of thiamine is crucial in assisting plants to combat abiotic stresses.

Cold-Seep Sediment Harbors Phylogenetically Diverse Uncultured Bacteria

  • Cho, Jae-Chang;Lee, Sang-Hoon;Oh, Hae-Ryun;Lee, Jung-Hyun;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.906-913
    • /
    • 2004
  • A culture-independent molecular phylogenetic survey was carried out on the bacterial community in cold-seep sediment at Edison Seamount, south of Lihir Island, Papua New Guinea. Small-subunit rRNA genes were amplified directly from the sediment DNA by PCR and cloned. The majority of the cloned 16S rRNA gene sequences were most closely related to as-yet-uncultivated microorganisms found in deep-sea sediments, and were primarily affiliated with one of four groups: the $\gamma$-, $\delta$-, and $\epsilon$-subdivisions of Proteobacteria, and Cytophaga-Flavobacterium-Bacteroides. We did not recover any sequences related to cyanobacteria, prochlorophytes, and $\alpha$-Proteobacteria, which are known to occur in great abundance within the surface mixed layer of the Atlantic and Pacific Oceans. The majority of the cloned $\gamma$-and $\epsilon$-Proteobacterial sequences were closely related to chemoautotrophic sulfur-oxidizing symbionts of marine benthic fauna, and the $\delta$-Proteobacterial sequences to sulfate- and sulfur-reducing bacteria, indicating that they might play an important role in chemoautotrophic primary production and the sulfur cycle in the cold-seep area. There results demonstrate the high diversity of the bacterial community in the cold-seep sediment, and substantially expand knowledge of the extent of bacterial diversity in this formidable and unique habitat.

Changes in Phytoplankton Community Structure by Freshwater Input in the Cheonsu Bay, Korea (담수 유입에 따른 천수만 해역의 식물플랑크톤 군집 변화)

  • Lee, Seung-Min;Chang, Soo-Jung;Heo, Seung
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1005-1017
    • /
    • 2019
  • Environmental factors and changes in phytoplankton community structure before (August 5, 2017), during (August 18 and 25) and after (August 30 and September 15) freshwater input were analyzed to investigate the effects of freshwater input from Ganwol and Bunam lakes located in the upper part of Cheonsu Bay. Due to the large amount of freshwater input in the Cheonsu Bay, the surface salinity of the bay decreased by more than 8 psu, and the thermocline existing in the bay during August weakened. In addition, hypoxic phenomena occurred temporarily in the bay as the low oxygen water mass from the freshwater lakes flowed into the bay, and chemical oxygen demand, nutrients, and N/P increased with freshwater inflow. The density of phytoplankton during the freshwater inflow increased owing to their input from the freshwater lakes. Diatom species (Eucampia zodiacus) dominated the phytoplankton community in the bay before freshwater input; nanoflagellates, chlorophyta, cyanobacteria, and diatoms (Pseudonitzschia delicatissima, Chateocceros spp.) entered during freshwater input; and after freshwater inflow ended, diatoms (Chateocceros spp.) again became predominant indicating a return to previous conditions. The amount of phytoplankton standing crops increased sharply due to the inflow of freshwater species into the bay on the second day of discharge compared to before freshwater input; pre-discharge conditions were restored at most stations except at some sites close to the Bunam Lake three days after discharge. Therefore, the large amount of freshwater flowing into the bay affects not only the geochemical circulation in the bay but also the phytoplankton community structure. In particular, the high concentration of nutrients in the freshwater lake affect the marine ecosystem of the bay during August.

The Pigments Variation of Phytoplankton in the Seomjin and Yeongsan River estuary (섬진강과 영산강 하구의 식물플랑크톤 기원 색소분포 변동)

  • Jeon, Hyeji;Lee, Eugene;Son, Moonho
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 2020
  • To investigate effect of variation in physiochemical conditions due to river discharge on phytoplankton, field surveys were conducted in the Seomjin and Yeongsan River estuaries from April to November 2016. The concentrations of DIN and DSi in Seomjin River estuary were gradually low as distance from upstream. On the other hands, the concentrations of DIN and DSi in Yeongsan River estuary were critically high at upstream, due to which is characterized as semi-enclosed eutrophic area. A total of 12 phytoplankton pigments were analyzed, and the distribution of each taxa was investigated using indicator for each phytoplankton taxa. Fucoxanthin, an indicator pigment of diatoms, showed an average of 0.61±1.00 ㎍ l-1 and 0.76±1.22 ㎍ l-1 in the Seomjin and Yeongsan River estuaries, respectively. Concentration of fucoxanthin was more than twice that of other pigments except chlorophyll a., indicating that diatoms were dominant taxa. Peridinin, an indicator pigment of dinoflagellate, showed some similar tendency to the microscopic observation, but mismatch results were also present, indicating a technical limitation of pigment analysis. Chlorophyll b, alloxanthin, and zeaxanthin, which are indicator pigments of green algae, cryptomonads, and cyanobacteria, were detected in both estuaries even though those taxa were not detected in microscopic observation. This indicates that the two estuaries were affected by freshwater species. Here, we can suggest that phytoplankton composition in estuary was directly influenced by the inflow from upstream. In particular, the phytoplankton population dynamics in Yeongsan River estuary was greatly associated with a large-scale artificial dyke, especially in summer rainy season. On the other hands, the seasonal and horizontal distribution of phytoplankton in Seomjin River estuary has changed along the salinity gradients and inflow-related changes.