• Title/Summary/Keyword: manure management

Search Result 297, Processing Time 0.023 seconds

Comparison of the effect of peat moss and zeolite on ammonia volatilization as a source of fine particulate matter (PM 2.5) from upland soil

  • Park, Seong Min;Hong, Chang Oh
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.907-914
    • /
    • 2019
  • Ammonia (NH3) that reacts with nitric or sulfuric acid in the air is the major culprit contributing to the formation of fine particulate matter (PM2.5). NH3 volatilization mainly originates from nitrogen fertilizer and livestock manure applied to arable soil. Cation exchange capacity (CEC) of peat moss (PM) and zeolite (ZL) is high enough to adsorb ammonium (NH4+) in soil. Therefore, they might inhibit volatilization of NH3. The objective of this study was to compare the effect of PM and ZL on NH3 volatilization from upland soil. For this, a laboratory experiment was carried out, and NH3 volatilization from the soil was monitored for 12 days. PM and ZL were added at the rate of 0, 1, 2, and 4% (wt wt-1) with 354 N g m-2 of urea. Cumulative NH3-N volatilization decreased with increasing addition rate of both materials. Mean value of cumulative NH3-N volatilization across application rate with PM was lower than that with ZL. CEC increased with increasing addition rate of both materials. While the soil pH increased with ZL, it decreased with PM. Increase in CEC resulted in NH4+ adsorption on the negative charge of the external surface of both materials. In addition, decrease in soil pH hinders the conversion of NH4+ to NH3. Based on the above results, the addition of PM or ZL could be an optimum management to reduce NH3 volatilization from the soil. However, PM was more effective in decreasing NH3 volatilization than ZL due to the combined effect of CEC and pH.

Assessment of water quality variations under non-rainy and rainy conditions by principal component analysis techniques in Lake Doam watershed, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Heo, Woomyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • This study was based on water quality data of the Lake Doam watershed, monitored from 2010 to 2013 at eight different sites with multiple physiochemical parameters. The dataset was divided into two sub-datasets, namely, non-rainy and rainy. Principal component analysis (PCA) and factor analysis (FA) techniques were applied to evaluate seasonal correlations of water quality parameters and extract the most significant parameters influencing stream water quality. The first five principal components identified by PCA techniques explained greater than 80% of the total variance for both datasets. PCA and FA results indicated that total nitrogen, nitrate nitrogen, total phosphorus, and dissolved inorganic phosphorus were the most significant parameters under the non-rainy condition. This indicates that organic and inorganic pollutants loads in the streams can be related to discharges from point sources (domestic discharges) and non-point sources (agriculture, forest) of pollution. During the rainy period, turbidity, suspended solids, nitrate nitrogen, and dissolved inorganic phosphorus were identified as the most significant parameters. Physical parameters, suspended solids, and turbidity, are related to soil erosion and runoff from the basin. Organic and inorganic pollutants during the rainy period can be linked to decayed matters, manure, and inorganic fertilizers used in farming. Thus, the results of this study suggest that principal component analysis techniques are useful for analysis and interpretation of data and identification of pollution factors, which are valuable for understanding seasonal variations in water quality for effective management.

Application of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production: the Effects of Whole Crop Rice Silage Utilization on Nutrient Balances and Profitability

  • Kikuhara, K.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.216-224
    • /
    • 2009
  • In Japan, since rice consumption has been decreasing with the westernization of Japanese eating habits, surplus paddy fields have been increasing. If these surplus paddy fields can be utilized for forage rice production as feed for animal production and excretions (feces and urine) from animal production can be applied to the paddy fields as manure, then the problems of surplus paddy fields and excretions from animal production may be solved, and the environment kept sustainable. The objectives of the present study were to apply a bio-economic model to dairy and forage rice integration systems in Japan and to examine the merit of introducing whole crop rice silage (WCRS), as well as economic and environmental effects of various economic and management options in the systems. Five simulations were conducted using this model. The use of WCRS as a home-grown feed increased environmental loads and decreased economic benefit because of the higher amount of purchased feed, when compared to the use of typical crops such as maize, alfalfa and timothy silage (simulation 1). Higher economic benefits from higher forage rice yields and higher milk production of a dairy cow were obtained (simulations 2, 3). There were no economic and environmental incentives for utilizing crude protein (CP) rich WCRS, because an increase in the CP content in WCRS led to the use of more chemical fertilizers, resulting in high production costs and nitrogen outputs (simulation 4). When evaluated under the situation of a fixed herd size, increasing forage rice yields decreased the total benefit of the production, in spite of the fact that the amount of subsidies per unit of land increased (simulation 5). It was indicated that excess subsidy support may not promote yield of forage rice. It was, however, observed in most cases that dairy and forage rice integration systems could not be economically established without subsidies.

Predicting nutrient excretion from dairy cows on smallholder farms in Indonesia using readily available farm data

  • Al Zahra, Windi;van Middelaar, Corina E.;de Boer, Imke J.M;Oosting, Simon J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2039-2049
    • /
    • 2020
  • Objective: This study was conducted to provide models to accurately predict nitrogen (N) and phosphorus (P) excretion of dairy cows on smallholder farms in Indonesia based on readily available farm data. Methods: The generic model in this study is based on the principles of the Lucas equation, describing the relation between dry matter intake (DMI) and faecal N excretion to predict the quantity of faecal N (QFN). Excretion of urinary N and faecal P were calculated based on National Research Council recommendations for dairy cows. A farm survey was conducted to collect input parameters for the models. The data set was used to calibrate the model to predict QFN for the specific case. The model was validated by comparing the predicted quantity of faecal N with the actual quantity of faecal N (QFNACT) based on measurements, and the calibrated model was compared to the Lucas equation. The models were used to predict N and P excretion of all 144 dairy cows in the data set. Results: Our estimate of true N digestibility equalled the standard value of 92% in the original Lucas equation, whereas our estimate of metabolic faecal N was -0.60 g/100 g DMI, with the standard value being -0.61 g/100 g DMI. Results of the model validation showed that the R2 was 0.63, the MAE was 15 g/animal/d (17% from QFNACT), and the RMSE was 20 g/animal/d (22% from QFNACT). We predicted that the total N excretion of dairy cows in Indonesia was on average 197 g/animal/d, whereas P excretion was on average 56 g/animal/d. Conclusion: The proposed models can be used with reasonable accuracy to predict N and P excretion of dairy cattle on smallholder farms in Indonesia, which can contribute to improving manure management and reduce environmental issues related to nutrient losses.

Estimation of Nitrate Leaching Rates for a Small Rural Watershed Using a Distributed Watershed Model (분포형 유역모델을 이용한 농촌지역 소유역의 질산성 질소 지하침출량 평가)

  • Park, Min-Hye;Park, Sunhwa;Kim, Hyun-Koo;Hwang, Jong-Yeon;Kim, Tae-seung;Chung, Hyen Mi;Cho, Hong-Lae;Lee, Taehwan;Koo, Bhon K.;Park, Yun Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.661-669
    • /
    • 2017
  • A distributed watershed model CAMEL (Chemicals, Agricultural Management and Erosion Losses) was applied to a small rural watershed where intensive livestock farming sites are located to estimate nitrate leaching rates from soil to groundwater. The model was calibrated against the stream flows, and T-N and $NO_3-N$ concentrations were observed at the watershed outlet for three rainfall events in 2014. The simulation results showed good agreement with the observed stream flows ($R^2=0.67{\sim}0.93$), T-N concentrations ($R^2=0.40{\sim}0.58$) and $NO_3-N$ concentrations ($R^2=0.43{\sim}0.65$). The estimated annual nitrate leaching rate of the watershed was 33.0 kg N/ha/yr. The contributing proportions of individual activities to the total nitrate leaching rate of the watershed were estimated for livestock farming, applications of chemical fertilizer, and manure. The simulation results showed that the highest contributor to the nitrate leaching rate of the watershed was chemical fertilizer applications. The simulation period was for one year only, however, and results may vary depending on different conditions. Gathering input data over a longer period of time and monitoring data for calibration is needed. When this has been accomplished, it is expected that this model can be applied to small rural watersheds for evaluating temporal and spatial variations of nitrogen transformations and transport processes.

Emergence Rate and Growth Characteristics of Ginseng Affected by Different Types of Organic Matters in Greenhouse of Direct-Sowing Culture (비닐하우스에서 인삼 직파재배 시 유기물 처리에 따른 연차간 입모율 및 생육특성)

  • Park, Hong Woo;Mo, Hwang Sung;Jang, In Bae;Yu, Jin;Lee, Young Seob;Kim, Young Chang;Park, Kee Choon;Lee, Eung Ho;Kim, Ki Hong;Hyun, Dong Yun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.27-36
    • /
    • 2015
  • Shading and soil environment are the main factors of growth and yield in ginseng (Panax ginseng C. A. Meyer). Ginseng yield is directly related to survival rate because of increased missing plant for their growing period. Under field conditions, diseases and pests significantly affect plant survival rate. We evaluated the seedling establishment, growth and ginsenoside of the ginseng plants, under controlled management conditions in a plastic greenhouse, when their treated with different types of organic matter. Ginseng seeds were sown at a rate of three seeds per hole, and the seeding space measured $10cm{\times}15cm$. Compared to the control, treatment of cattle manure vermicompost (CMV) was shown to increase seedling establishment and decrease ginsenoside content. Root weights of plants treated with CMV were higher than those of plants treated with other types of organic matter. In addition, seedling establishment of 2-year-old ginseng plants was decreased when it was compared to that of 1-year-old ginseng plants. Our results indicated that organic matter type and rate were associated with seedling establishment, growth characteristic and ginsenoside content in greenhouse of ginseng direct-sowing culture.

Monitoring of Microorganisms in Commercial Liquid Pig Manures in Korea (국내 유통 돈분 액비의 미생물 함량 모니터링)

  • Lim, Seong-Mook;Lee, Ji-Ho;Go, Woo-Ri;Kunhikrishnan, Anitha;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1181-1184
    • /
    • 2011
  • Total aerobic bacteria, Esherichia coli O157:H7, and Salmonella spp. were examined in commercial liquid pig manures. Commercial liquid pig manures (n=33) were collected from muck joint resource recovery plant at April, June, August, October 2009, Korea. Total aerobic bacteria were incubated at $37^{\circ}C$ for 24-48 hrs, and quantified as a colony-forming unit (CFU) $mL^{-1}$. Analysis of Esherichia coli O157:H7 and Salmonella spp. were followed by Korean Food Standards Codex method. Colony of Salmonella spp. was confirmed by API kit and real time polymerase chain reaction (PCR). Total aerobic bacteria isolated from fermented commercial liquid pig manures ranged from 2.8 to $24.3{\times}10^4\;CFU\;mL^{-1}$. Esherichia coli O157:H7 was not detected, and Salmonella spp. showed the low detection frequency at only 1 sample. This study suggests that continuous monitoring in commercial liquid pig manures is required to improve the agricultural food through management of agricultural land contaminated with liquid pig manures.

Analysis of Organic Matter and Nutrient Leaching Characteristics of Agricultural Land Soils in Reservoir Area (저수구역 경작지 토양의 유기물 및 영양염류 용출특성 분석)

  • Yu, Nayeong;Shin, Minhwan;Lim, Jungha;Kum, Donghyuk;Nam, Changdong;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.89-102
    • /
    • 2021
  • Soils in agricultural lands contain large amount of organic matter and nutrients due to the injected fertilizers and manure. During heavy rain, surface water and base runoff pollutants flows into a nearby stream or lake with eroded soil from agricultural lands. On the other hands, agricultural lands near the lake are inundated due to the increase of the water level in the lake, leading to organic matter and nutrient release from the inundated soil. In this study, releasing rates of nutrient salts and organic substances were analyzed for the soil in the agricultural land, where cultivation activities has been carried out and periodically flooded, to account for the possibility of contamination from the inundated agricultural land in reservoir areas The experiment results have shown that COD was released from the soil in anaerobic conditions, and T-P was released in both anaerobic and aerobic conditions. However, in the case of T-N, it was found that the runoff by soil was not made before the rainfall occurred, and when the soil was impound due to rainfall, the elution occurred under the aerobic conditions. Through the results of this study, it was possible to account for the effect of flooded agricultural lands on the water quality in the lake, and this could be reflected in an efficient agricultural non-point pollution management policy. In order to determine the precise releasing rate for each agricultural land, it is believed that the leaching experiment for paddy fields and grasslands are needed.

Effects of Long-Term Fertilizer Practices on Rhizosphere Soil Autotrophic CO2-Fixing Bacteria under Double Rice Ecosystem in Southern China

  • Tang, Haiming;Wen, Li;Shi, Lihong;Li, Chao;Cheng, Kaikai;Li, Weiyan;Xiao, Xiaoping
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1292-1298
    • /
    • 2022
  • Soil autotrophic bacterial communities play a significant role in the soil carbon (C) cycle in paddy fields, but little is known about how rhizosphere soil microorganisms respond to different long-term (35 years) fertilization practices under double rice cropping ecosystems in southern China. Here, we investigated the variation characteristics of rhizosphere soil RubisCO gene cbbL in the double rice ecosystems of in southern China where such fertilization practices are used. For this experiment we set up the following fertilizer regime: without any fertilizer input as a control (CK), inorganic fertilizer (MF), straw returning (RF), and organic and inorganic fertilizer (OM). We found that abundances of cbbL, 16S rRNA genes and RubisCO activity in rhizosphere soil with OM, RF and MF treatments were significantly higher than that of CK treatment. The abundances of cbbL and 16S rRNA genes in rhizosphere soil with OM treatment were 5.46 and 3.64 times higher than that of CK treatment, respectively. Rhizosphere soil RubisCO activity with OM and RF treatments increased by 50.56 and 45.22%, compared to CK treatment. Shannon and Chao1 indices for rhizosphere soil cbbL libraries with RF and OM treatments increased by 44.28, 28.56, 29.60, and 23.13% compared to CK treatment. Rhizosphere soil cbbL sequences with MF, RF and OM treatments mainly belonged to Variovorax paradoxus, uncultured proteobacterium, Ralstonia pickettii, Thermononospora curvata, and Azoarcus sp.KH33C. Meanwhile, cbbL-carrying bacterial composition was obviously influenced by soil bulk density, rhizosphere soil dissolved organic C, soil organic C, and microbial biomass C contents. Fertilizer practices were the principal factor influencing rhizosphere soil cbbL-carrying bacterial communities. These results showed that rhizosphere soil autotrophic bacterial communities were significantly changed under conditions of different long-term fertilization practices Therefore, increasing rhizosphere soil autotrophic bacteria community with crop residue and organic manure practices was found to be beneficial for management of double rice ecosystems in southern China.

Differences in fine dust emissions based on bedding type and quantity in horse stables

  • Ji Hyun Yoo;Jong An Lee;Jae Young Choi;Sang Min Shin;Hyeon Ah Kim;Mi Young Won;Yong Jun Kang;Hee Chung Ji;In Cheol Cho;Jin Hyoung Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.917-925
    • /
    • 2023
  • Efforts for developing the domestic horse industry in South Korea are evident through the various national policies. Proper management of stables for ensuring the health of horses is essential to sustain the growing equine industry. This study aimed to measure the fine dust emissions in stables based on the type and quantity of bedding used for horses, for establishing guidelines pertaining to bedding use in stables. The stables accommodated 12 horses. Sawdust, wood shavings, wood pellet, and straw were chosen as treatments. Three different quantities (approximately 3, 6, and 9 cm in height) were applied for each type. Fine dust measurements were carried out at three time points, with each measuring period lasting for approximately three weeks. Measurements included PM2.5 and PM10 fine dust levels. The initial analysis revealed that, sawdust with 9 cm bedding had the highest dust levels; approximately 54.6 ㎍/m3, for PM2.5 and 95.3 ㎍/m3, for PM10. Sawdust bedding at the highest quantity (9 cm) exhibited significantly higher initial fine dust emissions. These findings suggest that bedding materials with smaller particle size, such as sawdust and wood shavings, tend to produce finer dust. Initially, the fine dust emissions decreased in all bedding types and quantities, possibly due to the increased moisture content of bedding owing to horse manure production. However, emissions increased subsequently due to ammonia production.