• Title/Summary/Keyword: manufacturing diagnosis

Search Result 239, Processing Time 0.024 seconds

Auto-Generation of Diagnosis Program of PLC-based Automobile Body Assembly Line for Safety Monitoring (PLC기반 차체조립라인의 안전감시를 위한 진단프로그램 생성에 관한 연구)

  • Park, Chang-Mok
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • In an automated industry PLC plays a central role to control the manufacturing system. Therefore, fault free operation of PLC controlled manufacturing system is essential in order to maximize a firm's productivity. On the contrary, distributed nature of manufacturing system and growing complexity of the PLC programs presented a challenging task of designing a rapid fault finding system for an uninterrupted process operation. Hence, designing an intelligent monitoring, and diagnosis system is needed for smooth functioning of the operation process. In this paper, we propose a method to continuously acquire a stream of PLC signal data from the normal operational PLC-based manufacturing system and to generate diagnosis model from the observed PLC signal data. Consequently, the generated diagnosis model is used for distinguish the possible abnormalities of manufacturing system. To verify the proposed method, we provided a suitable case study of an assembly line.

The Development of a Failure Diagnosis System for High-Speed Manufacturing of a Paper Cup-Forming Machine (다품종 종이용기의 고속 생산을 위한 고장 진단 시스템 개발)

  • Kim, Seolha;Jang, Jaeho;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.37-47
    • /
    • 2019
  • Recently, as demand for various paper containers has rapidly grown, it is inevitable that paper cup-forming machines have increased their manufacturing speed. However, the faster manufacturing speed naturally brings more frequent manufacturing failures, which decreases manufacturing efficiency. As such, it is necessary to develop a system that monitors the failures in real time and diagnoses the failure progress in advance. In this research, a paper cup-forming machine diagnosis system was developed. Three major failure targets, paper deviation, temperature failure, and abnormal vibration, which dominantly affect the manufacturing process when they occur, were monitored and diagnosed. To evaluate the developed diagnosis system, extensive experiments were performed with the actual data gathered from the paper cup-forming machine. Furthermore, the desired system validation was obtained. The proposed system is expected to anticipate and prevent serious promising failures in advance and lower the final defect rate considerably.

Intelligent Fault Diagnosis System Using Hybrid Data Mining (하이브리드 데이터마이닝을 이용한 지능형 이상 진단 시스템)

  • Baek, Jun-Geol;Heo, Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.960-968
    • /
    • 2005
  • The high cost in maintaining complex manufacturing process makes it necessary to enhance an efficient maintenance system. For the effective maintenance of manufacturing process, precise fault diagnosis should be performed and an appropriate maintenance action should be executed. This paper suggests an intelligent fault diagnosis system using hybrid data mining. In this system, the rules for the fault diagnosis are generated by hybrid decision tree/genetic algorithm and the most effective maintenance action is selected by decision network and AHP. To verify the proposed intelligent fault diagnosis system, we compared the accuracy of the hybrid decision tree/genetic algorithm with one of the general decision tree learning algorithm(C4.5) by data collected from a coil-spring manufacturing process.

  • PDF

Model-based and wavelet-based fault detection and diagnosis for biomedical and manufacturing applications: Leading Towards Better Quality of Life

  • Kao, Imin;Li, Xiaolin;Tsai, Chia-Hung Dylan
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.153-171
    • /
    • 2009
  • In this paper, the analytical fault detection and diagnosis (FDD) is presented using model-based and signal-based methodology with wavelet analysis on signals obtained from sensors and sensor networks. In the model-based FDD, we present the modeling of contact interface found in soft materials, including the biomedical contacts. Fingerprint analysis and signal-based FDD are also presented with an experimental framework consisting of a mechanical pneumatic system typically found in manufacturing automation. This diagnosis system focuses on the signal-based approach which employs multi-resolution wavelet decomposition of various sensor signals such as pressure, flow rate, etc., to determine leak configuration. Pattern recognition technique and analytical vectorized maps are developed to diagnose an unknown leakage based on the established FDD information using the affine mapping. Experimental studies and analysis are presented to illustrate the FDD methodology. Both model-based and wavelet-based FDD applied in contact interface and manufacturing automation have implication towards better quality of life by applying theory and practice to understand how effective diagnosis can be made using intelligent FDD. As an illustration, a model-based contact surface technology an benefit the diabetes with the detection of abnormal contact patterns that may result in ulceration if not detected and treated in time, thus, improving the quality of life of the patients. Ultimately, effective diagnosis using FDD with wavelet analysis, whether it is employed in biomedical applications or manufacturing automation, can have impacts on improving our quality of life.

Intelligent Fault Diagnosis System for Enhancing Reliability of Coil-Spring Manufacturing Process

  • Hur Joon;Baek Jun Geol;Lee Hong Chul
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.3
    • /
    • pp.237-247
    • /
    • 2004
  • The condition of the manufacturing process in a factory should be diagnosed and maintained efficiently because any unexpected disorder in the process will be reason to decrease the efficiency of the overall system. However, if an expert experienced in this system leaves, there will be a problem for the efficient process diagnosis and maintenance, because disorder diagnosis within the process is normally dependent on the expert's experience. This paper suggests a process diagnosis using data mining based on the collected data from the coil-spring manufacturing process. The rules are generated for the relations between the attributes of the process and the output class of the product using a decision tree after selecting the effective attributes. Using the generated rules from decision tree, the condition of the current process is diagnosed and the possible maintenance actions are identified to correct any abnormal condition. Then, the appropriate maintenance action is recommended using the decision network.

A Study on an Internet-based Remote Diagnosis System for Machine Tool Failures (인터넷 기반의 공작기계 고장 원격 진단시스템에 관한 연구)

  • Kang, Dae-Chon;Kang, Mu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.75-81
    • /
    • 1999
  • In order to remain competitive, a manufacturing company needs to maintain the optimal condition of its manufacturing system. Machine tools as an important element of a manufacturing system consist of complex mechanical as well as electronic components. Therefore, diagnosing the troubles of machine tools is a tricky process which requires a lot of experience and knowledge. Since providing machine tool users with necessary services at the right time is very difficult and expensive, a remote diagnosis system is to be regarded as a good alternative, with which users can diagnose and fix the machine troubles. This paper presents a framework for a remote machine tools diagnosis system by combining the world wide web technology and backward reasoning expert system.

  • PDF

Development and Implementation of Smart Manufacturing Big-Data Platform Using Opensource for Failure Prognostics and Diagnosis Technology of Industrial Robot (제조로봇 고장예지진단을 위한 오픈소스기반 스마트 제조 빅데이터 플랫폼 구현)

  • Chun, Seung-Man;Suk, Soo-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.187-195
    • /
    • 2019
  • In the fourth industrial revolution era, various commercial smart platforms for smart system implementation are being developed and serviced. However, since most of the smart platforms have been developed for general purposes, they are difficult to apply / utilize because they cannot satisfy the requirements of real-time data management, data visualization and data storage of smart factory system. In this paper, we implemented an open source based smart manufacturing big data platform that can manage highly efficient / reliable data integration for the diagnosis diagnostic system of manufacturing robots.

Fault Diagnosis in a Virtual Machine using CORBA (CORBA를 이용한 가상기계에서의 고장진단에 관한 연구)

  • 서정완;강무진;정순철;김성환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.109-114
    • /
    • 1997
  • As CNC machine tool is one of core elements of manufacturing system, it is much important that it remains without troubleshoots. As a virtual machine is a recent alternative using IT for optimal utilization of CNC machine tool, it is a computer model that represents a CNC machine tool. But a virtual machine is still conceptual. So, in this paper, it is proposed that a virtual machine be a realistic model in the fault diagnosis module. For this purpose, the fault diagnosis system of machine tool using CORBA and fault diagnosis expert system has been implemented. Using this system, we have expections to diagnose exactly and prompty without the restriction of time or location, to reduce MTTR(Mean Time To Repair) and finally to increase the availability of manufacturing system.

  • PDF

인터넷을 이용한 공작기계 원격 고장 진단 시스템 구축에 관한 연구

  • 강대천;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.868-871
    • /
    • 1995
  • In order to remain competitive, a manufacturing company needs to maintain the optimal condition of its manufacturing system. Machine tools as an important element of a manufacturing system comprises complex mechanical as well as electronic components. Therefore, diagnosing the troubles of machine tools is a tricky process which requires a lot of experience and knowledge. Since providing machine tool users with necessary services at the right time is very difficult and expensive, a remote diagnosis system is to be regarded as a good alternative,with which users can diagnose and fix the machine troubles. This paper presents a framework for a remote machine tool diagnosis system using the world wide web technology and backward reasoning expert system.

  • PDF