• Title/Summary/Keyword: manufacture of the product

Search Result 525, Processing Time 0.02 seconds

Food Waste Composting by Using an Inoculum-Mixture Containing New Facultative Anaerobic Bacteria (신규 통성혐기성 세균으로 제조한 발효흙에 의한 음식물 쓰레기의 퇴비화)

  • Hwang, Kyo-Yeol;Lee, Jae-Yeon;Kim, Keun;Sung, Su-Il;Han, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Four newly isolated bacteria from soil were used to manufacture microbial inoculum to compost food waste. The bacteria, GM103, V25, V31, and V35, were identified as Bacillus licheniformis, B. subtilis, B. stearothermophilius, and B, subtilis, respectively. The bacterial strains were efficient to degrade protein and starch and also able to inhibit the growth of plant pathogenic fungus Rhizopus stronifer. The GM103 showed distinct capability in degrading starch, but grow only aerobically. The other three bacterial strains. V25, V31, and V35, could grow both aerobically as well as anaerobically, in 10%(w/v) salt, at $50^{\circ}C$, and had good viability and survival rate in soil. These characteristics of the bacterial strains are very adquate in Korean food composting containing high concentration of salt, especially at home. By mixing the 4 bacterial culture broth with molasses, beet pulp, zeolite, The bacterial inoculum for food waste composting-BIOTOP-CLEAN-was made. The performance of food waste composting by the BIOTOP-CLEAN was compared with that by control(not treated) and HS(other demestic company's inoculum product for food waste composting). The maximum temperature of the food waste during the composting with the BIOTOP-CLEAN was $50^{\circ}C$, while those of the control and HS were $30^{\circ}C$ and $35^{\circ}C$, respectively. The BIOTOP-CLEAN gave the good smell and showed dark brown color, while the control gave bad smell and HS gave less bad smell. These indicates that the food waste composting by the BIOTOP-CLEAN had been well accomplished. The culture broth of V25, V31, V35 were sparyed to the plants of tomato, chinese cabbage, raddish, red pepper every month and the spraying the culture broth to these plant significantly improved the production yield of the crops, due to the control effect of the bacterial strains against the plant pathogens.

  • PDF

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Analysis of Trans Fatty Acid Content in Processed Foods and Meat Products (가공식품과 육가공품의 트랜스 지방산 함량 조사)

  • Park, Jung-Min;Ji, Won-Gu;Kim, Eun-Jung;Park, Da-Jung;Shin, Jin-Ho;Shim, Soon-Mi;Suh, Hyung-Joo;Chang, Un-Jae;Kang, Duk-Ho;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.531-537
    • /
    • 2007
  • Small amounts of trans fatty acids exist naturally in beef and dairy foods. Also, they can be produced in the process of partial hydrogenation to manufacture shortning or margarine. They can provide a better palatability and shelf life. According to the recently studies, trans fatty acids can raise health risk such as heart diseases and coronary artery diseases. They can also increase low-density lipoprotein (LDL) cholesterol and decrease high-density lipoprotein (HDL) cholesterol in the blood plasma, therefore increasing the risk of atherosclerosis and diabetes. The aim of this study was to determine total lipids and trans fatty acids (TFAs) content in processed foods and meat products. The analysis of trans fatty acids was performed in 28 samples of donuts, 18 samples of bakeries, 4 samples of frozen doughs, 2 samples of popcorns, and 4 samples of meat products (ham, sausage, nuget, and bacon). Total lipids in processed foods and meat products were extracted by chloroform-Methanol method and acid digestion, respectively. They were analyzed by gas chromatography using a SP-2560 column and flame ionization detector. The amounts of TFAs per 100 g of foods were 0-3.3% (0.74% on average) in donuts, 0.2-5.8% (1.18% on average) in bakeries, 0.2-6.3% (1.93% on average) in frozen doughs, and 0-5.8% in popcorns. Meat products such as ham, sausage, and nuget analyzed 0.1% of TFAs, respectively and trans fatty acids in bacon were not detected. As a result, the distribution of TFAs in processed foods was widely ranged from O% to 6.3% according to manufacturers and types of products, whereas the content of TFAs in meat products ranged from 0% to 0.1%.

Production of yuzu granules using enzyme treated yuzu pulp powder and evaluation of its physiochemical and functional characterization (유자박 식이섬유를 이용한 유자과립 제조 및 이화학적 특성조사)

  • Seong, Hyeon Jun;Lee, Bo-Bae;Kim, Duck-Hyun;Lee, Seung-Hyun;Ha, Ji-Young;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • In this study, solubilized yuzu pulp powder (EYP) was produced using enzyme treated yuzu pulp powder (YP) and used to manufacture yuzu granules (0-20% EYP content). The physicochemical, product stability, and functional properties of Yuzu granules were compared among five enzyme treatments. Among the five treatments, CL had the highest YP solubilization yield (48.68%). Microstructural observation of EYP using FE-SEM revealed that its surface became irregular and porous after enzymatic treatment. Compared to YP, EYP had 2 times lower insoluble dietary fibers and 3 times lower hemicellulose and cellulose content. Among the yuzu granules, IV (yuzu granules with 15% EYP) had an excellent water and oil holding capacity and flowability. IV granule had the highest narirutin and hesperidin content of 3.4 mg and 2.2 mg/g DW, respectively and the highest antioxidant (68.4%) and tyrosinase inhibitory activities (82.5%). Therefore, EYP or granule with EYP can be used as a functional component in food industry or pharmaceutical field.

Monitoring of Food Additives as an Artificial Sweetener on Favorite Foods of Children (어린이 기호식품의 인공감미료 함량 모니터링)

  • Han, Youn-Jeong;Kim, Jun-Hyun;Park, Seung-Young;Oh, Jae-Ho;Jang, Young-Mi;Kim, Mee-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.2
    • /
    • pp.185-191
    • /
    • 2010
  • In this study, monitoring of food additives as an artificial sweetener on favorite foods of children, which are deal at retail store and stationery store around eliminatory school, was performed. We analyzed aspartame, potassium acesulfame, sodium saccharin, and cyclamate from candys, biscuits, chocolates and others. Total 604 items as targeted food were collected from the other country; 285 items of candys, 131 items of biscuits, 74 items of chocolates., 114 items of others. Targeted foods were classified by manufacture nation; 308 samples from domestic products, 211 from China, 26 from Indonesia, and 59 items from other nations. Artificial sweeteners were detected from 75 cases of food stuff which were 38 native product, 25 China, 9 Indonesia, and 3 others. The percentage of detected artificial sweeteners was aspartame 7.8% (47 cases), potassium acesulfame 3.0% (18 cases), sodium saccharin 1.8% (11 cases), and cyclamate 2.6% (16 cases). The detected concentration were followed [average(minimum-maximum) mg/kg]; aspartame 817 (21-4,988), potassium acesulfame 192 (24-1,136), sodium saccharin 91 (5-326), and cyclamate 926 (8-4,680). Aspartame was detected mainly on Korea foods, and cyclamate and sodium saccharin were detected from Indonesia food, artificial sweeteners were detected Chinese food, broadly. As a result, 17 cases were violated against regulatory standard of cyclamate, and sodium saccharin. Considering average body weight (36.9 kg) and daily intake of biscuits (15.6 g) for elementary student, ratio of estimated daily intake and acceptable daily intake was 0.86% for aspartame, 0.54% for potassium acesulfame, 0.77% for sodium saccharin, and 3.56% for cyclamate.