• Title/Summary/Keyword: manipulator inverse kinematics

Search Result 102, Processing Time 0.021 seconds

Design Optimization of Planar 3-DOF Parallel Manipulator for Alignment of Micro-Components (마이크로 부품 조립을 위한 평면 3 자유도 병렬 정렬기의 최적설계)

  • Lee, Jeong-Jae;Song, Jun-Yeob;Lee, Moon-G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.322-328
    • /
    • 2011
  • This paper presents inverse kinematics and workspace analysis of a planar three degree-of-freedom (DOF) parallel manipulator. Furthermore, optimization problem of the manipulator is presented. The manipulator adopts PRR (Prismatic-Revolute-Revolute) mechanism and the prismatic actuators are fixed to the base. This leads to a reduction of the inertia of the moving links and hence enables it to move with high speed. The actuators are linear electric motors. First, the mechanism based on the geometry of the manipulator is introduced. Second, a workspace analysis is performed. Finally, design optimization is carried out to have large workspace. The proposed approach can be applied to the design optimization of various three DOF parallel manipulators in order to maximize their workspace. The performance of mechanism is improved and satisfies the requirements of workspace to align micro-components.

A Damping Distribution Method for Inverse Kinematics Problem Near Singular Configurations (특이점 근방에서 역 기구학 해를 구하기 위한 자동 감쇄 분배 방법)

  • 성영휘
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.780-785
    • /
    • 1998
  • In this paper, it is shown that the conventional methods for dealing with the singularity problem of a manipulator can be generalized as a local minimization problem with differently weighted objective functions. A new damping method proposed in this article automatically determines the damping amounts for singular values, which are inversely proportional to the magnitude of the singular values. Furthermore, this can be done without explicitly computing the singular values. The proposed method can be applied to all the manipulators with revolute joints.

  • PDF

Graphic Simulator of the Mechanical Master-Slave Manipulator (기계식 Master-Slave 조작기의 그래픽 시뮬레이터)

  • 이종열;송태길;김성현;홍동희;정재후;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.743-746
    • /
    • 1997
  • The Master-Slave manipulator is the generally used remote handling equipment in the hot cell, in which the high level radioactive materials such as spent fuels are handled. To analyze the motion and to implement the training system by virtual reality technology, the simulator for M-S manipulator using the computer graphics is developed. The parts are modelled in 3-D graphics, assembled, and kinematics are assigned. The inverse kinematics of the manipulator is defined, and the slave of manipulator is coupled with master by the manipulator's specification. Also, the virtual workcell is implemented in the graphical environment which is the same as the real environment. This graphic simulator of manipulator can be effectively used in designing of the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management.

  • PDF

Analysis on Kinematic Characteristics of a Machine Tool Parallel Manipulator Using Neural Network (신경망을 이용한 공작기계 병렬 매니퓰레이터의 기구학 특성 분석)

  • Lee, Je-Sub;Ko, Jun-Bin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • This paper describes the kinematics which is a new type of parallel manipulator, and the neural network is applied to solving the forward kinematics problem. The parallel manipulator called it as a Stewart platform has an easy and unique solution about the inverse kinematics. However, the forward kinematics is difficult to get a solution because of the lack of an efficient algorithm caused by its highly nonlinearity. This paper proposes the neural network scheme of an Newton-Raphson method alternatively. It is found that the neural network can be improved its accuracy by adjusting the offset of the obtained result.

Inverse kinematics analysis of 6R serial manipulator for the automation of 3D scanner measurement (3차원 스캐너의 측정 자동화를 위한 수직 다관절로봇의 역기구학 해석)

  • 육경환;한성준;양현석;장민호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.929-934
    • /
    • 2004
  • As 3D scanner develops, it can be used in measurement. To accomplish complete 3D measurement, the scanner has to view different sides of the target. It can be done by moving the scanner and fix it at every measuring point. By human, it would take so much time. However, by using robot, measuring time can be reduced and the procedure can be automated. It is suitable for 6R serial manipulator to do this kind of work in which the scanner should go any position in arbitrary orientation. We did inverse kinematics analysis by analytical and graphical methods. Then, we compared two methods.

  • PDF

Inverse Kinematics of a Serial Manipulator : Redundancy and a Closed-rom Solution by Exploting Geomertiric Constraints (원료불출기의 역기구학 : 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • 홍금식;김영민;최진태;신기태;염영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.661-665
    • /
    • 1996
  • An inverse kinemetics problem of a reclaimer which digs and transports ironstones or coals in the raw yard is investigated. Because of the special features of the reclaimer of which scooping buckets are attached around the rotating drum at the end of boom, kinematic redundancy occurs in determining the joint varialbes For a given reclaiming point in space the forward kinematics yields 3 equations, however the number of involved variables in the equations are four. A plane equation approximating the surface near a reclaiming point is obtained by considering 8 adjacent points surrounding the reclaiming point. One extra equation to overcome redunduncyis further obtained from the condition that the normal vector at a reclaiming point is perpendicular to the plane. An approximate solution for a simplified problem is first discussed, Numerical solution for the oritinal nonlinear porblem with a constraint equation is also investigated. Finally a closed form solution which is not exact but sufficiently close enough is proposed by exploiting geometric constraint.

  • PDF

An analysis Inverse Kinematics for Real Time Operation of Industrial Robot (산업용 로봇의 실시간 운용을 위한 역기구학 해석)

  • 이용중
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.104-111
    • /
    • 1998
  • This study solves the inverse kinematics problem of industrial FANUC robot. Because every joint angle of FANUC robot is dependent on the position of end-effector and the direction of approach vector, arm metrix T6 is very complicated and each joint angle is a function of other joint angles. Therefore, the inverse kinematics problem can not be solved by conventional methods. Noticing the fact that if one joint angle is known, the other joint angles are calculated by the algebraic methods. $ heta$1 is calculated using neumerical analysis method, and solves inverse kinematics problem. This proposed method, in this study, is more simpler and faster than conventional methods and is very useful in the real-time control of the manipulator.

  • PDF

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra (등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석)

  • Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction (7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘)

  • Kim, Young-Loul;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.