• 제목/요약/키워드: manipulator

검색결과 1,812건 처리시간 0.027초

수중작업 로봇의 동특성 및 제어에 관한 연구 (Dynamic characteristics and control of submerged working robot manipulator)

  • 강이석;송정섭;조형석
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.488-496
    • /
    • 1991
  • Dynamic chanracterisitcs and control of a submerged working robot manipulator have been investigated for articulated type robot manipulator with three revoluted joints. A dynamic equation of the manipulator has been derived. The dynamic equation includes not only mass matrix, centrifugal and Coriolis terms and gravity terms but also added mass, buoyant force and drag force terms, which are important terms for underwater motion description. A series of simulations using computed torque method have been performed for the cases of straight and circular trajectory motion controls. The results of this study show that the dynamic characteristics of the submerged working robot manipulator are very different from that of the manipulator which works in air. The influences of added mass, buoyant force and drag force terms to the total required torques have been discussed as distribution ratios to the total required torques.

2진 로봇 매니퓰레이터의 기구학적 해석 (Kinematic Analysis of a Binary Robot Manipulator)

  • 류길하
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.162-168
    • /
    • 1998
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot's trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. This paper develops algorithms for kinematics and workspace analysis of a binary manipulator.

  • PDF

Development of a Joint Torque Sensor Fully Integrated with an Actuator

  • Kim, Bong-Seok;Yun, Seung-Kook;Kang, Sung-Chul;Hwang, Chang-Soon;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1679-1683
    • /
    • 2005
  • This paper suggests the new type of a joint torque sensor which is attached at each joint of a manipulator for making compliance. Previous six axis force/torque sensors are high cost and installed end-effector of the manipulator. However, torque on links of previous an end-effector cannot be measured. We design a joint torque sensor that can be fully integrated with an actuator in order to measure applying torque of the manipulator. The sensor system is designed through the structural analysis. The proposed joint torque sensors are installed to the 6 DOF manipulator of a mobile robot for hazardous works and we implemented experiments of measuring applied torque to the manipulator. By the experiment, we proved that the proposed low-cost joint torque sensor gives acceptable performance when we control a manipulator.

  • PDF

Model-based Reference Trajectory Generation for Tip-based Learning Controller

  • Rhim Sungsoo;Lee Soon-Geul;Lim Tae Gyoon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.357-363
    • /
    • 2005
  • The non-minimum phase characteristic of a flexible manipulator makes tracking control of its tip difficult. The level of the tip tracking performance of a flexible manipulator is significantly affected by the characteristics of the tip reference trajectory as well as the characteristics of the flexible manipulator system. This paper addresses the question of how to best specify a reference trajectory for the tip of a flexible manipulator to follow in order to achieve the objectives of reducing : tip tracking error, residual tip vibration, and the required actuation effort at the manipulator joint. A novel method of tip-based learning controller for the flexible manipulator system is proposed in the paper, where a model of the flexible manipulator system with a command shaping filter is used to generate a smooth and realizable tip reference trajectory for a tip-based learning controller.

Development of a Teleoperated Manipulator System for Remote Handling of Spent Fuel Bundles

  • Ahn Sung Ho;Jin Jae Hyun;Yoon Ji Sup
    • Nuclear Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.214-225
    • /
    • 2003
  • A teleoperated manipulator system has been developed for remote handling of the spent fuel bundles. A heavy-duty power manipulator with high reduction ratio joints is used for the slave manipulator in the developed system since the handling tasks of the spent fuel bundles need power. Also, the universal type master manipulator, which has force reflecting capability, is used for precise remote manipulation. The power manipulators so frequently occur the control input saturation that the precise control performances are not achieved due to the windup phenomenon. An advanced bilateral control scheme compensating for the saturation is applied to the teleoperated manipulator system. The validity of the developed system is verified by the grid cutting and fuel transportation tasks from the mockup spent fuel bundle.

A Study on the Configuration Control of a Mobile Manipulator Based on the Optimal Cost Function

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of information and communication convergence engineering
    • /
    • 제3권1호
    • /
    • pp.33-37
    • /
    • 2005
  • One of the most important feature of the Mobile Manipulator is redundant freedom. Using the redundant freedom, Mobile Manipulator can move various mode, perform dexterous motion. In this paper, to improve robot job ability, as two robots perform a job in co-operation control, we studied optimal position and posture of Mobile Manipulator with minimum movement of each robot joint. Kinematics of mobile robot and task robot is solved. Using mobility of Mobile robot, weight vector of robots is determined. Using Gradient methode, global motion trajectory is minimized. so the job which Mobile Manipulator perform is optimized. The proposed algorithm is verified with PURL-II which is Mobile Manipulator combined Mobile robot and task robot. and discussed the result.

방향성 매니퓰러빌리티를 이용한 주행 매니퓰레이터의 운동 계획 (Motion Planning for a Mobile Manipulator using Directional Manipulability)

  • 신동헌
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.95-102
    • /
    • 2005
  • The coordination of locomotion and manipulation has been the typical and main issue for a mobile manipulator. This is particularly because the solution for the control parameters is redundant and the accuracies of controlling the each joints are different. This paper presents a motion planning method for which the mobile base locomotion is less precise than the manipulator control. In such a case, it is appropriate to move the mobile base to discrete poses and then to move the manipulator to track a prescribed path of the end effector, while the base is stationary. It uses a variant of the conventional manipulability measure that is developed for the trajectory control of the end effector of the mobile manipulator along an arbitrary path in the three dimensional space. The proposed method was implemented on the simulation and the experiments of a mobile manipulator and showed its effectiveness.

유연 매니퓰레이터 동역학 모델링의 비선형 커플링 요소 (Nonlinear Coupling Factor in Dynamic Model of Flexible Manipulator)

  • 이진호;임성수;이순걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.404-408
    • /
    • 2005
  • Having flexibility in a manipulator will degrade trajectory tracking control and manipulator tip positioning. In practice, however, constraints imposed by various operating requirements, will render the presence of such flexibility unavoidable. The dynamic analysis of the flexible manipulator is essential in designing proper control systems. A flexible manipulator consists of infinite number of elastic modes and the modes are usually coupled to each other. For the practicality, however, it is usually assumed that the flexible system consists of finite number of elastic modes and the modes are decoupled. These assumptions result in a linear and decoupled mathematical model of the flexible manipulator and simplify the analysis of the dynamic behavior and the design of the control system. The decoupling and linearization of the flexible link, however, has been assumed without in depth analysis. This paper focuses on the analysis of the significance of the non-linear coupling factors.

  • PDF

평행사변형 구조를 갖는 매니퓰레이터 동역학의 선형화 및 단순화 설계 (A Design of Linearized and Simplited Arm Dynamics for the Manipulator with a Paralled Drive Mechanism)

  • 최진태;이병룡;정규원
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.855-861
    • /
    • 1989
  • 본 연구에서는 평행 사변형 구조를 갖는 매니퓰레이터의 운동에너지와 포텐셜 에너지를 구하고, 운동 에너지 식에서 매니퓰레이터 관성 모멘트 행렬 (manipulator inertia matrix)를 구한다.

신경 회로망을 이용한 단일 링크의 유연한 매니퓰레이터의 위치제어 (Position control of single-link manipulator using neural network)

  • 이효종;최영길;전홍태;장태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.18-23
    • /
    • 1990
  • In this paper, the dynamic modeling and a tip-position controller of a single-link flexible manipulator are developed. To design the controller of a flexible manipulator, at first, it is required to obtain the accurate dynamic model of manipulator describing both rigid motion and flexible vibration. For this purpose, FEM(Finite Element Method) and Lagrange approach are utilized to obtain the dynamic model. After obtaining the dynamic model of a single-link manipulator, a controller which computes the input torque to perform the desired trajectory is developed using neural network.

  • PDF