• Title/Summary/Keyword: manhole

Search Result 120, Processing Time 0.027 seconds

Accuracy Improvement of Urban Runoff Model Linked with Optimal Simulation (최적모의기법과 연계한 도시유출모형의 정확도 개선)

  • Ha, Chang-Young;Kim, Byunghyun;Son, Ah-Long;Han, Kun-Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • The purpose of this study is to improve the accuracy of the urban runoff and drainage network analysis by using the observed water level in the drainage network. To do this, sensitivity analysis for major parameters of SWMM (Storm Water Management Model) was performed and parameters were calibrated. The sensitivity of the parameters was the order of the roughness of the conduit, the roughness of the impervious area, the width of the watershed, and the roughness of the pervious area. Six types of scenarios were set up according to the number and types of parameter considering four parameters with high sensitivity. These scenarios were applied to the Seocho-3/4/5, Yeoksam, and Nonhyun drainage basins, where the serious flood damage occurred due to the heavy rain on 21 July, 2013. Parameter optimization analysis based on PEST (Parameter ESTimation) model for each scenario was performed by comparing observed water level in the conduits. By analyzing the accuracy of each scenario, more improved simulation results could be obtained, that is, the maximum RMSE (Root Mean Square Error) could be reduced by 2.41cm and the maximum peak error by 13.7%. The results of this study will be helpful to analyze volume of the manhole surcharge and forecast the inundation area more accurately.

A study on the Realtime Update of the Digital-Map by the General Survey Map (일반측량성과도에 의한 수치지도의 수시갱신방법 연구)

  • Lee, Sang-Gil;Kwon, Jay-Hyoun;Jeon, Jae-Han
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.19-26
    • /
    • 2007
  • The renewal update of the digital map constructed through NGIS has been conducted for the enhancement of usage, maintenance so that the latest data is guaranteed. The total update has been done every five years for five regions of the country using aerial photographs and satellite images. By launching the third phase of NGIS, the updating plan was changed from total to total or partial update including the real time update scheme. Furthermore, the update period was improved from five to two years and four years for a large and a small city, respectively. Therefore, it is necessary to develope a matching technique which combines various geographic information (such as drawing map, surveying drawing and map) with exact position on the digital map. In this study, we developed a matching algorithm based on central point and suggested a method which uses general surveying drawing for revision/update of the digital map. The general survey is conducted when a civilian development on lands are approved. Thus, the outcome from the survey, which is the general survey drawing, contains the latest various contents such as road, building, water pipe and manhole. A consistent and efficient method using the general survey drawing for near real time update of the digital map by applying the developed matching algorithm is presented.

  • PDF

Climate Change Impact Analysis of Urban Inundation in Seoul Using High-Resolution Climate Change Scenario (고해상도 기후시나리오를 이용한 서울지역 배수시스템의 기후변화 영향 분석)

  • Lee, Moon-Hwan;Kim, Jae-Pyo;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.345-355
    • /
    • 2015
  • Climate change impact on urban drainage system are analyzed in Seoul by using high-resolution climate change scenario comparing 2000s (1971~2000) with 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2100). The historical hourly observed rainfall data were collected from KMA and the climate change scenario-based hourly rainfall data were produced by RegCM3 and Sub-BATS scheme in this study. The spatial resolution obtained from dynamic downscaling was $5{\times}5km$. The comparison of probability rainfalls between 2000s and 2080s showed that the change rates are ranged on 28~54%. In particular, the increase rates of probability rainfall were significant on 3, 6 and 24-hour rain durations. XP-SWMM model was used for analyzing the climate change impacts on urban drainage system. As the result, due to the increase of rainfall intensities, the inundated areas as a function of number of flooded manhole and overflow amounts were increasing rapidly for the 3 future periods in the selected Gongneung 1, Seocho 2, Sinrim 4 drainage systems. It can be concluded that the current drainage systems on the selected study area are vulnerable to climate change and require some reasonable climate change adaptation strategies.

Development of Grid based Inundation Analysis Model (GIAM) (격자기반 침수해석모델(GIAM) 개발)

  • Lee, Byong Ju;Yoon, Seong Sim
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.181-190
    • /
    • 2017
  • Population congestion and increasing porosity caused by urbanization and increasing rainfall intensity are the main reasons for urban inundation damage. In order to reduce the damage to urban flooding, it is necessary to take a inundation analysis model that can be considered the topographic impact (i.e., building and road) and simulate the detailed inundation areas. In this study, Grid based Inundation Analysis Model (GIAM) is developed using a two-dimensional shallow water equations. The study area is Gangnam basin, with a surface area of $7.4km^2$, which includes 5 drainage areas such as Nonhyun, Yeoksam, Seocho 1, 2, and 3. EPA SWMM5 is used for simulating the overflows at each manhole. GIAM model is constructed to allow for simulating a inundation area with 6 m grid size. The inundation analysis is conducted in two heavy rainfall events (Sep. 21, 2010 and July 27, 2011) for the model evaluation. The accuracy of the simulated inundation area is calculated 0.61 and 0.57 at POD index using the historical flooded area report. The developed model will be used as a tool for analyzing the flood prone areas based on rainfall scenario, and a tool for predicting the detailed inundation area in the real-time.

Analysis on the Change of Haed Loss Coefficients at Four-Way Square Combining Manhole (4방향 사각형 합류맨홀에서의 손실계수 변화분석)

  • Jo, Jun Beom;Yoon, Sei Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.176-176
    • /
    • 2017
  • 배수시설 내 맨홀에서의 과부하 흐름은 관거시설의 배수 능력을 저하시켜 우수의 역류로 인한 도시 침수피해의 가중 요인이 된다. 특히, 도시 유역 중 하류부의 저지대에서 주로 설치되는 합류 맨홀은 저지대 침수에 많은 영향을 미치므로 합류맨홀에서의 흐름특성 분석 및 유입유량 변화에 따른 손실계수의 변화에 관한 연구가 필요한 실정이다. 현재까지 중간맨홀, $90^{\circ}$ 접합맨홀 및 3방향(T형) 합류맨홀 등에 관한 연구는 지속적으로 수행되고 있으나 4방향 합류맨홀에 관한 연구는 기초적인 연구만 수행되고 있다. 4방향 합류맨홀은 세 개의 유입관과 한 개의 유출관으로 구성되어 있으므로 각 유입관의 유입유량 변화에 따라서 맨홀에서의 손실계수가 다양하게 변화된다. 이와 같은 유입유량 변화에 따른 맨홀 내 흐름특성 분석 및 손실계수 산정에 관한 연구는 국내에서는 전무한 실정이다. 그러므로 유입유량 변화에 따른 4방향 합류맨홀에서의 손실계수 변화특성의 분석이 필요하다. 본 연구에서는 4방향 사각형 합류맨홀에서 세방향에서 유입되는 각 유입유량의 유입비($Q_{in}/Q_{out}$)가 0.0~1.0으로 변화하는 조건에서 평균 손실계수를 산정하기 위하여 하수도시설기준(환경부, 2011)의 표준 1호 맨홀 및 연결관경을 1/5로 축소하여 수리실험 장치를 제작하였다. 유출유량은 $3{\ell}/sec$이고 각 유입관(주유입관 및 좌 우측면유입관)의 유입유량을 $0{\sim}3{\ell}/sec$까지 유입유량의 비율을 각각 10%씩 변화시키면서 수리실험을 실시하였다. 실험결과 주관거의 유입유량이 줄어들고 측면관거의 유입유량이 늘어나면서 손실계수가 상승하는 것으로 나타났으며, 한쪽 측면 관거에서만 유입유량이 들어오는 $90^{\circ}$ 접합맨홀의 형태에서 손실계수가 가장 크게 나타났으며, 유입유량 변화에 따른 4방향 합류맨홀에서의 손실계수의 범위는 0.5~1.7으로 산정되었다. 이는 과부하 4방향 사각형 합류맨홀에서는 측면 유입관에서의 유입유량의 증가에 따라 평균 손실계수 값이 크게 증가되는 것으로 판단된다. 이는 김정수(2010) 등이 산정한 $90^{\circ}$ 접합맨홀의 손실계수 및 중간맨홀의 손실계수와 유사하게 나타났으므로 전체적인 손실계수의 범위는 타당하다고 판단된다. 또한, Wang(1988) 등의 유사연구와의 유입유량 변화에 따른 손실계수의 변화 경향도 유사하였다. 따라서 본 연구에서 산정된 유입유량 변화 조건이 고려된 4방향 합류맨홀에서의 손실계수는 XP-SWMM 등의 부정류 흐름이 고려된 도시지역의 침수해석이나 관거 배수능력 평가에 활용이 가능할 것으로 판단된다.

  • PDF

Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process (디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구)

  • Lee, Chang Jin;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.790-803
    • /
    • 2019
  • The dioctyl terephthalic acid (DOTP) process produces plastic plasticizers by esterification of terephthalic acid with powder in the form of octanol. In this study, the dust explosion characteristics of terephthalic acid directly injected into the manhole in the form of powder in the presence of flammable solvent or vapor in the reactor of this process were investigated. Dust particle size and particle size distribution dust characteristics were investigated, and pyrolysis characteristics of dust were investigated to estimate fire and explosion characteristics and ignition temperature. Also, the minimum ignition energy experiment was performed to evaluate the explosion sensitivity. As a result, the average particle size of terephthalic acid powder was $143.433{\mu}m$. From the thermal analysis carried out under these particle size and particle size distribution conditions, the ignition temperature of the dust was about $253^{\circ}C$. The lower explosive limit (LEL) of the terephthalic acid was determined to be $50g/m^3$. The minimum ignition energy (MIE) for explosion sensitivity is (10 < MIE < 300) mJ, and the estimated minimum ignition energy (Es) based on the ignition probability is 210 mJ. The maximum explosion pressure ($P_{max}$) and the maximum explosion pressure rise rate $({\frac{dP}{dt}})_{max}$ of terephthalic acid dust were 7.1 bar and 511 bar/s, respectively. The dust explosion index (Kst) was 139 mbar/s, corresponding to the dust explosion grade St 1.

Estimation of Inundation Area by Linking of Rainfall-Duration-Flooding Quantity Relationship Curve with Self-Organizing Map (강우량-지속시간-침수량 관계곡선과 자기조직화 지도의 연계를 통한 범람범위 추정)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.839-850
    • /
    • 2018
  • The flood damage in urban areas due to torrential rain is increasing with urbanization. For this reason, accurate and rapid flooding forecasting and expected inundation maps are needed. Predicting the extent of flooding for certain rainfalls is a very important issue in preparing flood in advance. Recently, government agencies are trying to provide expected inundation maps to the public. However, there is a lack of quantifying the extent of inundation caused by a particular rainfall scenario and the real-time prediction method for flood extent within a short time. Therefore the real-time prediction of flood extent is needed based on rainfall-runoff-inundation analysis. One/two dimensional model are continued to analyize drainage network, manhole overflow and inundation propagation by rainfall condition. By applying the various rainfall scenarios considering rainfall duration/distribution and return periods, the inundation volume and depth can be estimated and stored on a database. The Rainfall-Duration-Flooding Quantity (RDF) relationship curve based on the hydraulic analysis results and the Self-Organizing Map (SOM) that conducts unsupervised learning are applied to predict flooded area with particular rainfall condition. The validity of the proposed methodology was examined by comparing the results of the expected flood map with the 2-dimensional hydraulic model. Based on the result of the study, it is judged that this methodology will be useful to provide an unknown flood map according to medium-sized rainfall or frequency scenario. Furthermore, it will be used as a fundamental data for flood forecast by establishing the RDF curve which the relationship of rainfall-outflow-flood is considered and the database of expected inundation maps.

Prediction of Urban Flood Extent by LSTM Model and Logistic Regression (LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측)

  • Kim, Hyun Il;Han, Kun Yeun;Lee, Jae Yeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.273-283
    • /
    • 2020
  • Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Analysis on the Effects of Flood Damage Mitigation according to Installation of Underground Storage Facility (지하저류조 설치에 따른 침수피해 저감효과 분석)

  • Kim, Young Joo;Han, Kun Yeun;Cho, Wan Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.41-51
    • /
    • 2010
  • In this study, runoff simulation was carried out in the area of Bisan 7-dong, Seo-gu, Daegu as drainage basin and the effects of the installation of underground storage facilities were analyzed during heavy rainfall. SWMM model was used for the runoff and pipe network analysis on Typhoon Maemi, 2003. 2-D inundation analysis model based on diffusion wave was employed for inundation analysis and to verify computed inundation areas with observed inundation trace map. The simulation results agree with observed in terms of inundation area and depth. Also, the effects of flood damage mitigation were analyzed through the overflow discharge and 2-D inundation analysis, depending upon whether the underground storage facility is installed or not. When the underground storage facility ($W:120m{\times}L:180m{\times}H:1.7m$) is installed, volume of overflow could be reduced by 72% and flooding area could be reduced by 40.1%. When the underground storage facility ($W:120m{\times}L:180 m{\times}H:2.0m$) is installed, volume of overflow could be reduced by 84.8% and flooding area could be reduced by 50.6%. When the underground storage facility ($W:120m{\times}L:180m{\times}H:2.2m$) is installed, volume of overflow could be reduced by 94% and flooding area could be reduced by 91.2%. There is no overflow of manhole, when the height of storage facility is 2.5 m. It is expected that the study results presented through quantitative analysis on the effects of underground facilities can be used as base data for socially and economically effective installation of underground facilities to prevent flood damage.