• Title/Summary/Keyword: manganese oxide

Search Result 296, Processing Time 0.027 seconds

Synthesis and Electrochemical Characterization of Silica-Manganese Oxide with a Core-shell Structure and Various Oxidation States

  • Ryu, Seong-Hyeon;Hwang, Seung-Gi;Yun, Su-Ryeon;Cho, Kwon-Koo;Kim, Ki-Won;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2683-2688
    • /
    • 2011
  • Silica-manganese oxides with a core-shell structure were synthesized via precipitation of manganese oxides on the $SiO_2$ core while varying the concentration of a precipitation agent. Elemental analysis, crystalline property investigation, and morphology observations using low- and high-resolution electron microscopes were applied to the synthesized silica-manganese oxides with the core-shell structure. As the concentration of the precipitating agent increased, the manganese oxide shells around the $SiO_2$ core sequentially appeared as $Mn_3O_4$ particles, $Mn_2O_3+Mn_3O_4$ thin layers, and ${\alpha}-MnO_2$ urchin-like phases. The prepared samples were assembled as electrodes in a supercapacitor with 0.1 M $Na_2SO_4$ electrolyte, and their electrochemical properties were examined using cyclic voltammetry and charge-discharge cycling. The maximum specific capacitance obtained was 197 F $g^{-1}$ for the $SiO_2-MnO_2$ electrode due to the higher electronic conductivity of the $MnO_2$ shell compared to those of the $Mn_2O_3$ and $Mn_3O_4$ phases.

Thermal Decomposition Characteristics on Sodium Azide and Metallic Oxide Mixtures (나트륨 아지드와 금속산화물과의 혼합물에 대한 열분해 특성)

  • 이내우;최재욱;박광수;설수덕;왕석주
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.106-113
    • /
    • 1997
  • The thermal characteristics of two binary mixtures by sodium azide/manganese dioxide and ferric oxide, two ternary mixtures by sodium azide/silicon dioxide/manganese dioxide and ferric oxide were studied to obtain the basic data of gas-generating agents for air bags. The thermal reaction for all mixtures started at about $420^{\circ}C$, but the temperature at which the reaction rate reached a maximum was different with the states of samples. According to reaction results, nitrogen, nitrogen oxide and nitrogen dioxide were detected by GC-MS and so many kinds of new chemicals from sodium azide and metal oxide mixtures by XRD. NMS is considered as most stable and reasonable mixture for this types of gas-generating agents.

  • PDF

The Study of Manufacturing the AAO Template and Fabrication of Carbon and Metal Oxide Nanofibers using AAO Template (AAO (Anodized Aluminium Oxide) template 제조 및 이를 이용해 제조한 탄소 및 산화 금속 나노 섬유 물질에 관한 연구)

  • Kim, Cheong;Park, Soo-Gil
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • In this study, we manufactured the anodized alumina oxide (AAO) template and fabricated the carbon nanofibers and manganese oxide nanofibers using AAO template for application to electrochemical capacitor. Pore diameters of the AAO template were increased from 50 to 90 nm by increasing the acid treatment time after two-step anodizing process. Furthermore nanofibers, which is fabricated by AAO template, showed uniform diameter and micro structure. It is suggested that the surface area is larger than commercial electrode material and it is enhancing the energy density by increasing the specific capacitance.

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin;Yoon, Da-ye;Kim, Woo-byoung;Lee, Jae-won
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

Reactivity of Biogenic Manganese Oxide for Metal Sequestration and Photochemistry: Computational Solid State Physics Study (전산 고체물리를 이용한 바이오 산화망간 광물의 금속흡착과 광화학 반응도의 이해)

  • Kwon, Ki-Deok D.;Sposito, Garrison
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Mineralogical-geochemical Characteristics of Manganese Nodules in the Deep Subseafloor Sediments at Site U1371 in the Western South Pacific Gyre Area (남서태평양 환류지역 U1371 심부퇴적층에서 발견된 망가니즈단괴의 광물학적-지화학적 특성 연구)

  • Yang, Kiho;Jung, Jaewoo
    • Ocean and Polar Research
    • /
    • v.44 no.2
    • /
    • pp.139-145
    • /
    • 2022
  • Manganese nodules were recovered within the deep subseafloor sediments (118.22 mbsf) at Site U1371 during International Ocean Discovery Program (IODP) expedition 329 from the South Pacific Gyre (SPG). Because most manganese nodules exist on the seabed surface, nodules present in deep sediments are uncommon. Therefore, the growth origin of manganese nodules was identified through mineralogical and geochemical analyses. The manganese nodule was divided into the concentric layer outside the manganese region and the inner part of the phosphatized region consisting of manganese oxide minerals and carbonate fluorapatite (CFA) minerals, respectively. The two-dimensional element distribution analysis of Mn, Co, Ni, Sr and Cu, Zn with low Mn/Fe ratio confirmed that manganese nodules were formed predominantly by a hydrogenetic process and a biogenic process in certain manganese layers. As a result, the manganese nodule was continuously precipitated in SPG environments of oligotrophic open paleoocean conditions and rapidly buried with siliceous ooze sediments when the SPG changed to a eutrophic environment. It has been confirmed that manganese nodules found within deep subseafloor sediments could be used as a new proxy for the reconstruction of paleooceanographic conditions.

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Jang, Hyun-Tae;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.537-544
    • /
    • 2011
  • This work was conducted to investigate the oxidation characteristics of methane having the highest ignition temperature among the other hydrocarbon gases using transition metal catalysts. The catalyst used for methane oxidation was manganese oxide having a various oxidation number, such as MnO, $MnO_2$, $Mn_2O_3$, $Mn_3O_4$, $Mn_4O_5$. The manganese oxide(MnxOy) catalyst is impregnated on $TiO_2$, $Al_2O_3$ for methane oxidation. To enhanced both of activity and life time of catalysts, Ni and Co was used as a promoter. In this study, various co-catalysts were synthesized by using excess wet impregnation method. The effect of reaction temperature and space velocity was measured to calculate the activity of catalysts such as, activation energy of $T_{50}$, and $T_{90}$. The life time of bi-metallic manganese mixture, such as Mn-Co and Mn-Ni catalysts, were increased more 10 % than manganese oxide catalyst, but activity of those was decreased slightly.

Catalytic Oxidation of Toluene over Mn-Ce/${\gamma}-Al_2O_3$ Catalyst Doped with Ce (Ce가 첨가된 Mn-Ce/${\gamma}-Al_2O_3$ 촉매상에서 톨루엔의 촉매 산화 반응)

  • Cheon, Tae-Jin;Kim, Hye-Jin;Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.513-518
    • /
    • 2005
  • Catalytic oxidation of toluene on the manganese oxide catalysts and manganese-cerium oxide catalysts was investigated. The catalysts were characterised by X-ray diffraction(XRD), thermo gravimetric analyzer(TGA), toluene-temperature program reduction(Toluene-TPR). We found that the optimal manganese content was 18.2 wt.% and the optimal cerium content was 10.0 wt.% at catalytic oxidation of toluene. It is shown that ceria improves the activity of manganese oxide phases. From the XRD results, it was estimated that $MnO_2$ phase was active site in the monometallic and bimetallic catalysts. From the TGA and Toluene-TPR results, it show that ceria improves the mobility of the lattice oxygen, adequate oxidation state of the active phase, reduction ability at low temperature, and re-oxidation of the active site.

Behavior of Mn Ions in Spinel-type Mn-Zn-Fe Oxide System (스피넬계 Mn-Zn 페라이트의 망간이온이 미치는 영향)

  • 권오흥
    • Resources Recycling
    • /
    • v.9 no.5
    • /
    • pp.11-15
    • /
    • 2000
  • The sample made of $Mn_3O_4$ indicated an excellent frequency dependency for intial permeability and core loss. Moreover the homogeneity of cation configuration in he spinel structure was confirmed by X-ray diffraction analysis. The result of homogeneity of the spinel structural coincided with the analytical results of temperature dependence of magnetization. Furthermore, the influence of manganese oxide as starting material, on homogeneity of spinel structure was examined by using thermogravimetry-differential thermal analysis. It may be concluded that the reaction between $Mn_3O_4$ and Fe-Zn oxide mixture proceeds at fist in all combination of manganese oxide and oxie mixture, and then Mn-Zn-Fe spinel was formed.

  • PDF