• Title/Summary/Keyword: maneuver target

Search Result 117, Processing Time 0.021 seconds

The Observability Analysis of SDINS on The Trajectory for The In-Flight Alignments (스트랩다운 관성항법 시스템의 운항 중 정렬을 위한 궤적에 따른 가관측성 분석)

  • Park, Joon-Goo;Lee, Jang-Gyu;Park, Chan-Gook;Chung, Do-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1002-1004
    • /
    • 1996
  • In this paper, presented are the results of observability analysis for the vehicle maneuver during In-Flight Alignment of SDINS. The target system for observability analysis is 10th order one. Three trajectories for IFA are considered. To analyze the observability of the time varying system, correlation coefficient is used and to measure the degree of observability of the given system, simulation is carried out using covariance matrix. The results of simulation show that trajectories which are having continuous changes in attitude and acceleration of system is superior to straight trajectory in correcting navigation errors.

  • PDF

Detection of a Bias Level in Prediction Errors due to Input Acceleration (입력 가속에서 비롯된 예측오차 바이어스 레벨의 검출)

  • Shin, Hae-Gon;Hong, Sun-Mog
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 1993
  • In this paper the normalized innovations squared of a Kalman filter is used to detect a bias level in prediction errors due to target accelerations. The probability density function of the normalized innovation squared is obtained for a steady state Kalman filter, and it is used to calculate the detection probability of the bias level. A typical example is given to compute the detection probability and to plot the maneuver detector operating characteristic curves.

  • PDF

Study on Improvement of Target Tracking Performance for RASIT(RAdar of Surveillance for Intermediate Terrain) Using Active Kalman filter (능동형 Kalman filter를 이용한 지상감시레이더의 표적탐지능력 향상에 관한 연구)

  • Myung, Sun-Yang;Chun, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.52-58
    • /
    • 2009
  • If a moving target has a linear characteristics, the Kalman filter can estimate relatively accurate the location of a target, but this performance depends on how the dynamic status characteristics of the target is accurately modeled. In many practical problems of tracking a maneuvering target, a simple kinematic model can fairly accurately describe the target dynamics for a wide class of maneuvers. However, since the target can exhibit a wide range of dynamic characteristics, no fixed SKF(Simple Kalman filter) can be matched to estimate, to the required accuracy, the states of the target for every specific maneuver. In this paper, a new AKF(Active Kalman filter) is proposed to solve this problem The process noise covariance level of the Kalman filter is adjusted at each time step according to the study result which uses the neural network algorithm. It is demonstrated by means of a computer simulation that the tracking capability of the proposed AKF(Active Kalman filter) is better than that of the SKF(Simple Kalman Filter).

Performance improvement of underwater target distance estimation using blind deconvolution and time of arrival method (블라인드 디컨볼루션 및 time of arrival 기법을 이용한 수중 표적 거리 추정 성능 향상 기법)

  • Han, Min Su;Choi, Jea Young;Son, Kweon;Lee, Phil Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.378-386
    • /
    • 2017
  • Accurate distance measurement between maneuver target in underwater and measuring devices is required to perform quantitative test evaluation in marine weapons system R&D process. In general, the target distance is measured using a one-way ToA (Time of Arrival) method that calculates the time difference between transmitted and received signals from the two accurately synchronized devices. However, the distance estimation performance is degraded because of the multi-path environments. In this paper, the time-variant transfer function of complex underwater environment is estimated from each received data frame using RBD (Ray-based Blind Deconvolution), and the estimated time-variant transfer function is then used to get rid of the effect about complex underwater environment and to recover the data signal using PTRM (Passive Time Reversal Mirror). The result from the simulation and experimental data show that the suggested method improve the distance estimation performance when comparing with the conventional ToA method.

Radome Slope Estimation using Mode Parameter Renewal Method of IMM Algorithm (IMM 알고리듬의 모드 계수 갱신 방법을 통한 레이돔 굴절률 추정)

  • Kim, Young-Mo;Back, Ju-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.763-770
    • /
    • 2017
  • A radome mounted on the front of an aircraft can cause refraction errors for various reasons that occur during maneuver in seeking and tracking a target. This refraction error means that the microwave seeker is detecting apparent target. An Interactive Multiple Model (IMM) algorithm is applied to estimate radome slope mounted on an aircraft in 3D space. However, even though the parameter of uncertain system model such as radome slope can be estimated, the estimated performance can not be guaranteed when it exceeds the range of the predicted value. In this paper, we propose a method to update the predicted value by using the radome slope as the mode parameter of the IMM algorithm, and confirm the radome slope estimation performance of the proposed method.

The Development of HILS and Test Equipment for Millimeter-Wave (Ka-Band) Seeker's Test and Evaluation (밀리미터파 탐색기 시험 평가를 위한 HILS 및 시험 장비 개발)

  • Song, Sung-Chan;Na, Young-Jin;Yoon, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • This paper describes the developed HILS and test equipment in order to test the performances of MMW(Millimeter-Wave) seeker which can detect and track a high speed of short-range ballistic missile and aircraft. This system is used to 141 horn antenna array, array switching, and gain and phase control algorithm to simulate various kind of targets and trajectory of high speed and maneuver moving target. In addition, it simulates not only velocity and range for these targets but also clutter and jamming environments. System configuration and implementation and the measurement results of major subsystems such as target motion simulator, simulation signal generator, high speed data aquisition unit, and central control unit are presented. These systems could verify the detection and tracking performance of MMW seeker through dynamic real-time test based on simulation flight scenario.

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

Temporary Satellite Constellation Design for the Ground Reconnaissance Mission (지상 정찰을 위한 임시 위성군집궤도 설계)

  • Kim, Hae-Dong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1112-1120
    • /
    • 2009
  • In this paper, the authors introduced a new approach to find the target orbits of each satellite in order to establish a temporary reconnaissance constellation mission to minimize the average revisit time (ART) while satisfying the constraint on fuel limit. Two distinct problems are dealt with: the first is to reconnoiter the local area with discriminating fuel constraint the second is to reconnoiter ground moving target with same fuel constraint. A preliminary effort in applying a genetic algorithm to those problems has also been demonstrated through simulation study. The results show that current ARTs of each mission are reduced by 41% and 42%, respectively, by relocating the orbit of each satellite. Naturally, the final result may depend on satellite orbits, sensor characteristics, allowable fuel cost, thruster capability, and maneuver strategies.

A Study on the Ship Collision Avoidance Model considered Speed (속력을 고려한 선박충돌회피모델에 관한 연구)

  • Yang, Hyoung-Seon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.779-785
    • /
    • 2006
  • From a point of view of suggesting the method to avoid ship's collision, the speed of ships has to be considered sufficiently according to encounter angle of ships. But the new safe-guard ring of ship's collision avoidance support model in the close quarters is established assuming that the ratio of own ship' speed to a target ship's speed is less than about 1.7. Therefore in this paper, as doing a study concerned with the establishment of safe-guard ring reflected the encounter angle and the speed of ships, we will propose the new model of ship collision avoidance for safe maneuver of ship's collision avoidance.

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.