• Title/Summary/Keyword: maneuver

Search Result 862, Processing Time 0.031 seconds

Anatomic Correction of Truncus Arteriosus without a Extracardiac Conduit - Report of 6 cases - (심장외 도관을 사용하지 않는 동맥간의 완전교정;6례 보고)

  • Yun, Tae-Jin;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.25 no.12
    • /
    • pp.1448-1454
    • /
    • 1992
  • Between July, 1990 and July, 1992, 6 male patients of truncus arteriosus, whose age ranged from 2 months to 18 months, underwent total surgical correction without a extracardiac conduit. Their anatomic types were type I in 3, type II in 2 and III, in one by the Collett-Edwards classification. Surgical techniques were similar to the first description by Lecompte except for the fact that distal pulmonary arterial stumps were approximated to ventriculotomy site without Lecompte maneuver in all cases. Also in all cases, mon-ocusps were placed using glutaraldehyde fixed autologous pericardial patch directly in right ventricular outflow tract. Three patients died postoperatively and the causes of death were myocardial failure, pulmonary hypertensive crisis and pulmonary complication due to progressive pulmonary vascualr obstructive disease respectively. The three survivors have been followed up for 6~10 months with good functional results.

  • PDF

Understanding of Neurological Examination for Clinical Therapist (임상치료사를 위한 신경학적 검사의 이해)

  • Kim, Byung-Jo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.2 no.2
    • /
    • pp.229-236
    • /
    • 2007
  • Clinical therapist use neurological examination to acquire the necessary information from the patients who is neurological damaged. It is necessary to have enough neurological knowledge and clinical experience to collect useful data. Neurological disease of symptom is well correspond with anatomical location and function, therefore neurological examination is one of the powerful tool to diagnosis. These tools will be a great help to clinical therapist to evaluate the patients and helps to select most pertinent treatment approach to patients. Neurological examination can classified and evaluate with Mental Status Examination, Cranial Nerves Examination, Motor and Sensory System Examination, Reflexes, Gait and Station Evaluation, Special Maneuver. Generally, various neurological examination tools are used by therapist in clinical field. Understanding of method of Neurological examination tools and understanding of result of examination from patients's response is very important. Therefore, this research will help to understand clinical meaning by neurological examination.

  • PDF

Assessing Methods of Heart Rate Variability (심박변이에 대한 평가방법)

  • Park, Ki-Jong;Jeong, Heejeong
    • Annals of Clinical Neurophysiology
    • /
    • v.16 no.2
    • /
    • pp.49-54
    • /
    • 2014
  • Heart rate variability is significantly associated with cardiovascular complications in various neurological disorders with cardiac impairment. Measures of spontaneous heart rate variability might be different from provocating tests of heart rate variability such as deep breathing and Valsava maneuver. Methods for analysis are divided into time domain methods and frequency domain methods. There are standard deviation of NN interval, standard deviation of average NN interval, root mean square of the successive differences, NN50, and pNN50 in time domain methods. Frequency domain bands can be divided into very low, low, and high frequency. Each variables are influenced by sympathetic and/or parasympathetic activity.

A Lane-change Collision Avoidance Algorithm for Autonomous Vehicles and HILS(Hardware-In-the-Loop Simulation) Test (자율주행 차량의 충돌회피 차선변경 제어 알고리즘 개발과 HILS 시험)

  • 류제하;김종협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.240-248
    • /
    • 1999
  • This paper presents a lane-change collision avoidance control algorithm for autonomous vehicles that will be used in AHS(Automated Highway System). In the proposed control algorithm, nominal control inputs are generated by solving the inverse vehicle dynamic equations of motion for a lane-change maneuver. In addition, a corrective steering input from preview as well as DYC (Direct Yaw Moment Control) may be included to reduce unpredictable errors and to insure yaw directional stability, respectively. The performance of the algorithm is evaluated with an ABS HILS system which consist of 17 DOF vehicle model and real ABS hardware parts. The HILS simulation results show that the proposed algorithm may be used for emergency lane-change maneuvers for autonomous vehicles.

  • PDF

A Study on the Control Algorithm for a Ball Screw Type of Motor Driven Power Steering System (Ball screw형 전동식 동력 조향 장치의 제어에 관한 연구)

  • 윤석찬;왕영용;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.124-134
    • /
    • 2000
  • The power wteering system for automobiles is becoming core popular for supporting steering efforts of the drivers, especially for a parking lot maneuver. Though hydraulic power steering has been widely used for a long time, the efficiency of that is not high enough. The motor driven power steering system can solve the problems associated with the hydraulic power steering system. In this study, dynamic model and control algorithm of the ball screw type of MDPS systenem have been derived and analysed by using the method of discrete modeling technology. To improve steering feel and power steering characteristics, the additional scheme is proposed to the conventional power boosting control algorithm. Through simulations, control gain effects to the steering angle gain in the frequency domain were verified. The steering returnability and steering torque phase lag in on-center handing test were performed also.

  • PDF

Effects of Liquid Fuel on Spacecraft's Moment of Inertia and Motion during Reorientation (방향전환 기동 시 액체연료가 위성체의 관성모멘트 및 자세운동에 미치는 영향 분석)

  • Kang, Ja-Young;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, reorientation based on angular momentum exchange is applied for a bias momentum stabilized satellite, which is equipped with a spherical fuel tank, and the effect of liquid slosh on the attitude properties such as inertia tensor and angular rate is investigated. In order to represent the slosh motion of liquid an equivalent mechanical model is adopted and full nonlinear equations of motion for three-body system are derived. Computer simulations are performed for several cases, which use the viscosity of liquid and the center location of the tank as input parameters, mainly in order to observe how the viscosity of liquid and the center location of the tank influence the spacecraft’s attitude. The investigation includes observing time-variations of the inertia tensor, especially presence of components of product of inertia during the maneuver.

  • PDF

Design and Control of Wall Climbing Robot Using Impeller (임펠러를 이용한 벽면이동로봇의 설계 및 제어)

  • Koo, Ig-Mo;Song, Young-Kouk;Moon, Hyung-Pil;Park, Sun-Kyu;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.177-185
    • /
    • 2010
  • In this paper, a wall climbing robot, called LAVAR, is developed, which is using an impeller for adhering. The adhesion mechanism of the robot consists of an impeller and two-layered suction seals which provide sufficient adhesion force for the robot body on the non smooth vertical wall and horizontal ceiling. The robot uses two driving-wheels and one ball-caster to maneuver the wall surface. A suspension mechanism is also used to overcome the obstacles on the wall surface. For its design, the whole adhering mechanism is analyzed and the control system is built up based on this analysis. The performances of the robot are experimentally verified on the vertical and horizontal flat surfaces.

Evaluation of A Direct Yaw Moment Control Algorithm by Brake Hardware-In-The -Loop Simulation (브레이크HILS를 이용한 능동 요모멘트 제어 알고리즘의 평가)

  • 류제하;김호수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.172-179
    • /
    • 1999
  • This paper presents a simple but effective DYC algorithm which enhances vehicle lateral stability by using an anti=lock brake system (ABS). In the proposed algorithm, only the front outer wheel is controlled during cornering maneuver instead of controlling all four wheels because the wheel has the largest role in DYC and it is easy and simple to control the only one wheel. An ABS Hardware - In -The -Loop Simulation ( HILS) system that may be used to realistically test real vehicle dynamic behavior in a lab is used for evaluating the proposed DYC algorithm in severe situations where a vehicle is destabilized without DYC . The HILS results show that the proposed DYC algorithm has the potential of maintaining vehicle stability in some dangerous situations.

  • PDF

Three-axis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential

  • Bang, Hyo-Choong;Lee, Kwang-Hyun;Lim, Hyung-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.99-109
    • /
    • 2003
  • Attitude control law synthesis for the three-axis attitude maneuver of a flexible spacecraft model is presented in this study. The basic idea is motivated by previous works for the extension into a more general case. The new case includes gravitational gradient torque which has significant effect on a wide range of low earth orbit missions. As the first step, the fully nonlinear dynamic equations of motion are derived including gravitational gradient. The control law design based upon the Lyapunov approach is attempted. The Lyapunov function consists of a weighted combination of system kinetic and potential energy. Then, a set of stabilizing control law is derived from the basic Lyapunov stability theory. The new control law is therefore in a general form partially validating the previous work in some sense.

Sensor Alignment Calibration for PrecisionAttitude Determination of Spacecrafts

  • Lee, Il-Hyoung;Ryoo, Chang-Kyung;Bang, Hyo-choong;Tahk, Min-Jea;Lee, Sang-Ryool
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.83-93
    • /
    • 2004
  • A new alignment calibration method of attitude sensors for the precisionattitude determination of a spacecraft based on the extended Kalman filter is proposed.The proposed method is divided into two steps connected in series: the gyro and thestar tracker calibration. For gyro calibration, alignment errors and scale factor errorsare estimated during the calibration maneuver under the assumption of a perfect startracker. Estimation of the alignment errors of the star trackers and compensation ofthe gyro calibration errors are then performed using the measurements includingpayload information. Performance of the proposed method are demonstrated bynumerical simulations.