• Title/Summary/Keyword: mammalian IgG

Search Result 11, Processing Time 0.018 seconds

Egg Antibody Farming and IgY Technology for Food and Biomedical Applications

  • Sim, J.S.;Sunwoo, H.H.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • It has been recognized that the hen, like its mammalian counterparts, provides young chicks with antibodies as protection against hostile invaders. This system facilitates the transfer of specific antibodies from serum to egg yolk, and provides a supply of antibodies called immunoglobulin Y(IgY) to the developing embryo and the hatched chick. The protection against pathogens that the relatively immune-incompetent newly hatched chick has, is through transmission of antibodies from the mother via the egg. Egg yolk, therefore, can be loaded with a large amount of IgY against pathogens which can immobilize the existing or invading pathogens during the embryo development or in day-old chicks. Thus, the immunization of laying hens to various pathogens results in production of different antigen-specific IgY in eggs. Egg yolk contains 8∼20 mg of jmmunoglobulins (IgY) per ml or 136∼340 mg per yolk suggesting that more than 30 g of IgY can be obtained from one immunized hen in a year. By immunizing laying hens with antigens and collecting IgY from egg yolk, low cost antibodies at less than $10 per g compared to more than $20,000 per g of mammalian IgG can be obtained. This IgY technology opens new potential market applications in medicine, public health, veterinary medicine and food safety. A broader use of IgY technology could be applied as biological or diagnostic tool, nutraceutical or functional food development, oral-supplementation for prophylaxis, and as pathogen-specific antimicrobial agents for infectious disease control. This paper has emphasized that when IgY-loaded chicken eggs are produced and consumed, the specific antibody binds, immobilizes and consequently reduces or inhibits the growth or colony forming abilities of microbial pathogens. This concept could serve as an alternative agent to replace the use of antibiotics, since today, more and more antibiotics are less effective in the treatment of infections, due to the emergence of drug-resistant bacteria.

Purification of Egg Immunoglobulin IgY (계란 면역 단백질[IgY]의 정제 연구)

  • Kim, In-Ho;Lee, Yong-Tak;Lee, Chung-Hee;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.677-681
    • /
    • 1999
  • Purificationi of egg yolk immunoglobulin(IgY) was performed to understand the property of egg immunoglobulin. IgY differs from mammalian IgY in the molecular size(larger), isoelectric point(more acidic), and binding ability with mammalian complement and protein A(nonbinding ability). IgY is also known as ${\gamma}$-livetin and exists in egg yolk together with other two water-solubel proteins, ${\alpha}$-livetin(chicken serum albumin) and ${\beta}$-livetin(${\alpha}_2$-glycoprotein) and various lipoproteins(Low density lipoprotein, LDL and High density lipoprotein, HDL) which are the major components of egg yolk. The first step of isolation of IgY is to separate the water-solube proteins from lipoproteins. We report a simple method for separation of water soluble proteins using k-carrageenan and sedimentation. k-carrageenan was found to be effective for removal of yolk lipoprotein as a precipitate. IgY remained supernatant, and was isolated by chromatography on columns of DEAE-Sephacel and G 75 gel filtration chromatography.

  • PDF

Egg Antibody Farming and IgY Technology for Food and Biomedical Applications (식품과 생의학을 위한 계란 항체생산과 IgY 기술의 활용)

  • Sim, Jeong S.;Sunwoo, Hoon H.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.07b
    • /
    • pp.37-54
    • /
    • 2003
  • It has been recognized that the hen. like its mammalian counterparts. provides young chicks with antibodies as protection against hostile invaders. This system facilitates the transfer of specific antibodies from serum to egg yolk. and provides a supply of antibodies called immunoglobulin Y(IgY) to the developing embryo and the hatched chick. The protection against pathogens that the relatively immuno-incompetent newly hatched chick has. is through transmission of antibodies from the mother via the egg. Egg yolk. therefore. can be loaded with a large amount of IgY against pathogens which can immobilize the existing or invading pathogens during the embryo development or in day-old chicks. Thus. the immunization of laying hens to various pathogens results in production of different antigen-specific IgY in eggs. Egg yolk contains 8~20 mg of immunoglobulins (IgY) per $m\ell$ or 136~340 mg per yolk suggesting that more than 30 g of IgY can be obtained from one immunized hen in a year. By immunizing laying hens with antigens and collecting IgY from egg yolk. low cost antibodies at less than $10 per g compared to more than $20.000 per g of mammalian IgG can be obtained. This IgY technology opens new potential market applications in medicine. public health veterinary medicine and food safety. A broader use of IgY technology could be applied as biological or diagnostic tool. nut-raceutical or functional food development. oral-supplementation for prophylaxis. and as pathogen-specific antimicrobial agents for infectious disease control. This paper has emphasized that when IgY-loaded chicken eggs are produced and consumed. the specific antibody binds. immobilizes and consequently reduces or inhibits the growth or colony forming abilities of microbial pathogens. This concept could serve as an alternative agent to replace the use of antibiotics. since today. more and more antibiotics are less effective in the treatment of infections. due to the emergence of drug-resistant bacteria.

  • PDF

Analysis of Changes in Colostrum Proteins by Mammalian Species (포유류의 종에 따른 초유 단백질의 변화에 대한 분석)

  • Kim, Seung Hee;Kim, Woan-Sub
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • There have been numerous reports indicating that milk proteins influence immune functions. Colostrum refers to the breast milk of mammals, secreted starting from the fourth or fifth day after delivery. It has abundant nutrition for the survival of newborn infants. Most importantly, it contains bioactive substances with growth-stimulating and antibiotic, functions. Thus, the colostrum has various physiological roles. This study measured the differences in the composition of colostrum derived from dairy cattle, hanwoo, porcine, and goat sources. The results showed that immunoglobulin, lactoferrin, lactoperoxidase, serum albumin, IgG heavy chain, and IgG light chain were significantly higher in the colostrum of dairy cattle, hanwoo, and goats, but low in porcine colostrum. There was no significant difference in ${\alpha}_{S2}$-casein, ${\alpha}_{S1}$-casein, ${\beta}$-casein, ${\kappa}$-casein, ${\beta}$-lactoglobulin, and ${\alpha}$-lactalbumin contents until seven days after birth. However, porcine colostrum showed high contents of all proteins from the first day to the second day after delivery.

Large scale purification and characterization of recombinant human autotaxin/lysophospholipase D from mammalian cells

  • Song, Yuanda;Dilger, Emily;Bell, Jessica;Barton, William A.;Fang, Xianjun
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.541-546
    • /
    • 2010
  • We utilized a mammalian expression system to purify and characterize autotaxin (ATX)/lysophospholipase D, an enzyme present in the blood responsible for biosynthesis of lysophosphatidic acid. The human ATX cDNA encoding amino acids 29-915 was cloned downstream of a secretion signal of CD5. At the carboxyl terminus was a thrombin cleavage site followed by the constant domain (Fc) of IgG to facilitate protein purification. The ATX-Fc fusion protein was expressed in HEK293 cells and isolated from conditioned medium of a stable clone by affinity chromatography with Protein A sepharose followed by cleavage with thrombin. The untagged ATX protein was further purified to essential homogeneity by gel filtration chromatography with a yield of approximately 5 mg/liter medium. The purified ATX protein was enzymatically active and biologically functional, offering a useful tool for further biological and structural studies of this important enzyme.

Expression and Characterization of Human N-Acetylglucosaminyltransferases and ${\alpha}$2,3-Sialyltransferase in Insect Cells for In Vitro Glycosylation of Recombinant Erythropoietin

  • Kim, Na-Young;Kim, Hyung-Gu;Kim, Yang-Hyun;Chung, In-Sik;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.383-391
    • /
    • 2008
  • The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed in mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennarytype complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using a pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of Nacetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using $UDP-^{14}C-Gal\;and\;CMP-^{14}C-Sia$ as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the ed blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.

Prevalence and Clinical Significance of Mammalian Target of Rapamycin Phosphorylation (p-mTOR) and Vascular Endothelial Growth Factor (VEGF) in Clear Cell Carcinoma of the Ovary

  • Khemapech, Nipon;Pitchaiprasert, Sunaree;Triratanachat, Surang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6357-6362
    • /
    • 2012
  • Background: To determine the prevalence of mammalian target of rapamycin phosphorylation (p-mTOR) and vascular endothelial growth factor (VEGF) and any correlation with clinical characteristics and prognosis in ovarian clear cell carcinoma patients. Materials and Method: Seventy four paraffin-embedded specimens of such carcinomas frompatients who underwent surgery, received adjuvant chemotherapy and were followed up at King Chulalongkorn Memorial Hospital during January 2002 to December 2008 were stained with rabbit monoclonal IgG p-mTOR and rabbit polyclonal IgG VEGF using immunohistochemical methods. Medical records were reviewed and clinical variables were analysed. Results: The prevalence of positive p-mTOR in ovarian clear cell carcinoma was 87.9% and significantly higher in advance-stage than early-stage patients (100% versus 83.6%, P<0.05). Two-year disease free survival and 2-year overall survival in patients with positive p-mTOR expression were 60% and 69.2% with no differences from patients with negative p-mTOR expression (p>0.05). The prevalence of VEGF expression was 63.5% and significantly higher in chemo-sensitive than chemo-resistant patients (70.7% versus 37.5%, P<0.05). Two-year disease free survival and 2-year overall survival in patients with VEGF expression were 72.3% and 83% respectively which were significantly different from patients with negative VEGF expression (p<0.05). Conclusions: p-mTOR expression in ovarian clear cell carcinoma was significantly correlated with the stage of disease. VEGF expression was significantly correlated with chemosensitivity, and survival. Further studies of related targeted therapy might be promising.

Production of Monoclonal Antibody to Newcastle Disease Virus and its Diagnostic Use (뉴켓슬병 바이러스에 대한 단크론성 항체생산 및 진단에 이용)

  • Chung Ok Choi;Chung Gil Lee;Sung Man Cho;Jin Soo Na;Soo Hwan An;Joon Hun Kwon
    • Korean Journal of Poultry Science
    • /
    • v.15 no.3
    • /
    • pp.207-210
    • /
    • 1988
  • A total of 3 hybridoma clones producting menoclonal antibody (MCA) against Newcastle disease virus(NDV) was raised by cell fusion method. The MCAs did not cross react against other avian or mammalian viruses tested. However, these antibodies reacted with all strains of velogenic and lentogenic NDVs tested indicating that they are unable to discriminate the possible antigenic differences among NDVs. All. the MCAs were classified as IgG type and did not show neutralizing and hemagglutination inhibition (HAI) activity except one clone which has low HAI activity. One of these MCA raised in mouse ascites revealed the titer of $10^6$ by indirect immunofluorescent antibody (IFA) test Using the MCA, virulent NDV could easily be detected from tracheal and conjunctival smears made 2 to 3 days after experimental infection.

  • PDF

Development of monoclonal antibody against Porphyromonas gingivalis heat shock protein (Porphyromonas gingivali의 열충격단백-특이성 단클론항체의 개발)

  • Yi, Ni-Na;Lee, Ju-Youn;Kim, Sung-Jo;Choi, Jeom-II
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.11-21
    • /
    • 2007
  • Heat shock protein (HSP) is one of cellular protein commonly present in major periodontopathogenic bacteria as well as mammalian cells. The protein may play a role in the immunopathogenesis by modulating autoimmune reaction due to its high level of sequence homology between bacteria and human counterpart. Hence, identifying immunodomiant epitope of bacteria HSP that is cross-reactive to periodontopathogenic bacteria with a specificity to human HSP may comprise a critical strategy for development of a periodontal vaccine. The present study was performed to establish clones producing monoclonal antibody reactive to Porphyromonas gingivalis (p. gingivalis) HSP with a specificity to human HSP. 4 different hybridomas were cloned producing monoclonal IgG antibodies to P, gingivalis HSP and evaluated for their reactivity and specificity to other periodontopathogenic bacteria as well as to human HSP. These four monoclonal antibodies reacted with p. gingivalis HSP only with specificities to other bacteria tested and human HSP as well. The antigenic epitopes producing the 4 monoclonal antibody may be potentially developed as vaccine candidates. Further investigations are under way to identify more clones producing monoclonal antibodies reactive to P, gingivalis HSP and to other periodontopathogenic bacteria as well, while maintaining specificities to human counterpart.

Destabilization of TNF-α mRNA by Rapamycin

  • Park, Jong-Woo;Jeon, Ye-Ji;Lee, Jae-Cheol;Ahn, So-Ra;Ha, Shin-Won;Bang, So-Young;Park, Eun-Kyung;Yi, Sang-Ah;Lee, Min-Gyu;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2012
  • Stimulation of mast cells through the high affinity IgE receptor (Fc${\varepsilon}$RI) induces degranulation, lipid mediator release, and cytokine secretion leading to allergic reactions. Although various signaling pathways have been characterized to be involved in the Fc${\varepsilon}$RI-mediated responses, little is known about the precious mechanism for the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in mast cells. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), reduces the expression of TNF-${\alpha}$ in rat basophilic leukemia (RBL-2H3) cells. IgE or specific antigen stimulation of RBL-2H3 cells increases the expression of TNF-${\alpha}$ and activates various signaling molecules including S6K1, Akt and p38 MAPK. Rapamycin specifically inhibits antigeninduced TNF-${\alpha}$ mRNA level, while other kinase inhibitors have no effect on TNF-${\alpha}$ mRNA level. These data indicate that mTOR signaling pathway is the main regulation mechanism for antigen-induced TNF-${\alpha}$ expression. TNF-${\alpha}$ mRNA stability analysis using reporter construct containing TNF-${\alpha}$ adenylate/uridylate-rich elements (AREs) shows that rapamycin destabilizes TNF-${\alpha}$ mRNA via regulating the AU-rich element of TNF-${\alpha}$ mRNA. The antigen-induced activation of S6K1 is inhibited by specific kinase inhibitors including mTOR, PI3K, PKC and $Ca^{2+}$chelator inhibitor, while TNF-${\alpha}$ mRNA level is reduced only by rapamycin treatment. These data suggest that the effects of rapamycin on the expression of TNF-${\alpha}$ mRNA are not mediated by S6K1 but regulated by mTOR. Taken together, our results reveal that mTOR signaling pathway is a novel regulation mechanism for antigen-induced TNF-${\alpha}$ expression in RBL-2H3 cells.