DOI QR코드

DOI QR Code

Large scale purification and characterization of recombinant human autotaxin/lysophospholipase D from mammalian cells

  • Song, Yuanda (Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine) ;
  • Dilger, Emily (Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine) ;
  • Bell, Jessica (Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine) ;
  • Barton, William A. (Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine) ;
  • Fang, Xianjun (Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine)
  • Received : 2010.05.24
  • Accepted : 2010.07.15
  • Published : 2010.08.31

Abstract

We utilized a mammalian expression system to purify and characterize autotaxin (ATX)/lysophospholipase D, an enzyme present in the blood responsible for biosynthesis of lysophosphatidic acid. The human ATX cDNA encoding amino acids 29-915 was cloned downstream of a secretion signal of CD5. At the carboxyl terminus was a thrombin cleavage site followed by the constant domain (Fc) of IgG to facilitate protein purification. The ATX-Fc fusion protein was expressed in HEK293 cells and isolated from conditioned medium of a stable clone by affinity chromatography with Protein A sepharose followed by cleavage with thrombin. The untagged ATX protein was further purified to essential homogeneity by gel filtration chromatography with a yield of approximately 5 mg/liter medium. The purified ATX protein was enzymatically active and biologically functional, offering a useful tool for further biological and structural studies of this important enzyme.

Keywords

References

  1. Stracke, M. L., Krutzsch, H. C., Unsworth, E. J., Arestad, A., Cioce, V., Schiffmann, E. and Loitta, L. A. (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem. 267, 2524-2529.
  2. Bollen, M., Gijsbers, R., Ceulemans, H., Stalmans, W. and Stefan, C. (2000) Nucleotide pyrophosphatases/phosphodiesterases on the move, Critical Rev. Biochem. Mol. Biol. 35, 393-432. https://doi.org/10.1080/10409230091169249
  3. Umezu-Goto, M., Kishi, Y., Taira, A., Hama, K., Dohmae, N., Takio, K., Yamari, T., Mills, G. B., Inoue, K., Aoki, J., and Arai, H. (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatic acid production. J. Cell Biol. 158, 227-233. https://doi.org/10.1083/jcb.200204026
  4. Tokumura, A., Majima, E., Kariya, Y., Tominaga, K., Kogure, K., Yasuda, K. and Fukuzawa, K. (2002) Identification of human plasma lysophospholipase D, a lysophosphatic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem. 277, 39436-39442. https://doi.org/10.1074/jbc.M205623200
  5. Jansen, S., Stefan, C., Creemers, J., Waelkens, E., Van Eynde, A., Stalmans, W. and Bollen, M. (2005) Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J. Cell Sci. 118, 3081-3089. https://doi.org/10.1242/jcs.02438
  6. Koike, S., Keino-Masu, K., Ohto, T. and Masu, M. (2006) The N-terminal hydrophobic sequence of autotaxin (ENPP2) functions as a signal peptide. Genes Cells. 11,133-142. https://doi.org/10.1111/j.1365-2443.2006.00924.x
  7. Pradere, J. P., Tarnus, E., Gres, S., Valet, P. and Saulnier-Blache, J. S. (2007) Secretion and lysophospholipase D activity of autotaxin by adipocytes are controlled by N-glycosylation and signal peptidase. Biochim. Biophys. Acta. 1771, 93-102. https://doi.org/10.1016/j.bbalip.2006.11.010
  8. Tanaka, M., Okudaira, S., Kishi, Y., Ohkawa, R., Iseki, S., Ota, M., Noji, S., Yatomi, Y., Aoki, J. and Arai, H. (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J. Biol. Chem. 281, 25822-25830. https://doi.org/10.1074/jbc.M605142200
  9. van Meeteren, L. A., Ruurs, P., Stortelers, C., Bouwman, P., van Rooijen, M. A., Pradére, J. P., Pettit, T. R., Wakelam, M. J., Saulnier-Blache, J. S., Mummery, C. L., Moolenaar, W. H. and Jonkers, J. (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol. Cell Biol. 26, 5015-5022. https://doi.org/10.1128/MCB.02419-05
  10. Liu, S., Umezu-Goto, M., Murph, M., Lu, Y., Liu, W., Zhang, F., Yu, S., Stephens, L. C., Cui, X., Murrow, G., Coombes, K., Muller, W., Hung, M. C., Perou, C. M., Lee, A. V. Fang, X. and Mills, G. B. (2009) Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15, 539-550. https://doi.org/10.1016/j.ccr.2009.03.027
  11. Ferry, G., Tellier, E., Try, A., Grés, S., Naime, I., Simon, M. F., Rodriguez, M., Boucher, J., Tack, I., Gesta, S., Chomarat, P., Dieu, M., Raes, M., Galizzi, J. P., Valet, P., Boutin, J. A. and Saulnier-Blache, J. S. (2003) Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Upregulated expression with adipocyte differentiation and obesity. J. Biol. Chem. 278, 18162-18169. https://doi.org/10.1074/jbc.M301158200
  12. Barton, W. A., Tzvetkova-Robev, D., Miranda, E. P., Kolev, M. V., Rajashankar, K. R., Himanen, J. P. and Nikolov, D. B. (2006) Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Nat. Struc. Mol. Biol. 13, 524-532. https://doi.org/10.1038/nsmb1101
  13. Thomas, P. and Smart T. G. (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods. 51,187-200. https://doi.org/10.1016/j.vascn.2004.08.014
  14. Giganti, A., Rodriguez, M., Fould, B., Moulharat, N., Coge, F., Chomarat, P., Galizzi, J. P., Valet, P., Saulnier-Blache, J. S., Boutin, J. A. and Ferry, G. (2008) Murine and Human Autotaxin ${\alpha}$, ${\beta}$, and ${\gamma}$ Isoforms: gene organization, tissue distribution, and biochemical characterization. J. Biol. Chem. 283, 7776-7789. https://doi.org/10.1074/jbc.M708705200
  15. Fang, X., Yu, S., Bast, R. C., Liu, S., Xu, H. J., Hu, S. X. LaPushin, R., Claret, F. X., Aggarwal, B. B., Lu, Y. and Mills, G. B. (2004) Mechanisms for lysophosphatidic acidinduced cytokine production in ovarian cancer cells. J. Biol. Chem. 279, 9653-9661. https://doi.org/10.1074/jbc.M306662200
  16. Tsuda, S., Okudaira, S., Moriya-Ito, K., Shimamoto, C., Tanaka, M., Aoki, J., Arai, H., Murakami-Murofushi, K. and Kobayashi, T. (2006) Cyclic phosphatidic acid is produced by autotaxin in blood. J. Biol. Chem. 281, 26081-26088. https://doi.org/10.1074/jbc.M602925200
  17. Haga, A., Hashimoto, K., Tanaka, N., Nakamura, K. T. and Deyashiki, Y. (2008) Scalable purification and characterization of the extracellular domain of human autotaxin from prokaryotic cells. Protein Expr. Purif. 59, 9-17. https://doi.org/10.1016/j.pep.2007.12.008
  18. van Meeteren, L. A., Ruurs, P., Christodoulou, E., Goding, J. W., Takakusa, H., Kikuchi, K., Perrakis, A., Nagano, T. and Moolenaar, W. H. (2005) Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J. Biol. Chem. 280, 21155-21161. https://doi.org/10.1074/jbc.M413183200
  19. Tamaoku, K., Ueno, K., Akiura, K. and Ohkura, Y. (1982) New water-soluble hydrogen donors for the enzymatic photometric determination of hydrogen peroxide. II. N-ethyl-N-(2-hydroxy-3-sulfopropyl)aniline derivatives. Chem. Pharm. Bull. 30, 2492-2497. https://doi.org/10.1248/cpb.30.2492
  20. Lee, Z., Cheng, C. T., Zhang, H., Subler, M. A., Wu, J., Mukherjee, A. Windle, J., Chen, C. K. and Fang, X. Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol. Biol. Cell. 19, 5435-5445. https://doi.org/10.1091/mbc.E08-03-0316

Cited by

  1. Autotaxin: A protein with two faces vol.401, pp.4, 2010, https://doi.org/10.1016/j.bbrc.2010.09.114
  2. Initial evaluation of protein A modified capillary-channeled polymer fibers for the capture and recovery of immunoglobulin G vol.37, pp.5, 2014, https://doi.org/10.1002/jssc.201301205
  3. Overview of Recent Progress in Protein-Expression Technologies for Small-Molecule Screening vol.19, pp.7, 2014, https://doi.org/10.1177/1087057114520975