• Title/Summary/Keyword: mammalian

Search Result 1,509, Processing Time 0.026 seconds

Ion Transports in Mouse Collecting Duct Cells (M-1)

  • Park, Mi-Young;Song, Jin-Mi;Jang, Phil-Geum;Lee, Ryang-Hwa;Jung, Jin-Sup
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.50-50
    • /
    • 1999
  • The mammalian cortical collecting duct (CCD) plays a major role in regulating renal NaCl absorption, which is important in controlling total body Na and Cl homeostasis. The M-1 cell line, derived from the mouse cortical collecting duct, is being used as a mammalian model of the CCD to study electrolytes transport.(omitted)

  • PDF

Effect of External Cations on the Voltage-dependent Inactivation of the Rapidly Activating Delayed Rectifier $K^+$ currents $(l_{Kr}$ and HERG Currents

  • Youm, Jae-Boum;Jo, Su-Hyun;Ho, Won-Kyung;Earm, Yung-E
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.57-57
    • /
    • 1999
  • It is well known that rapidly activating delayed rectifier $K^{+}$ channels ( $I_{Kr}$ ) playa role in repolarisation in mammalian hearts. Recently, human ether-a- go- go related gene (HERG) channels was shown to be a molecular equivalent to $I_{Kr}$ . We have investigated the permeation of various external cations on $I_{Kr}$ in mammalian hearts and on HERG channels expressed in Xenopus laevis oocytes.(omitted)

  • PDF

Absence of an Essential Thiol in Human Glutaminyl Cyclase: Implications for Mechanism

  • Temple, Jeffrey S.;Song, In-Seok;Burns, Kathleen H.;Bateman, Robert C.
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.243-248
    • /
    • 1998
  • We have partially sequenced glutaminyl cyclases from several mammalian and one avian species and found that the two cysteine residues of the human glutaminyl cyclase are completely conserved. The mammalian glutaminyl cyclase has been reported to possess reactive thiols (Busby, Jr, et aI., 1987, J BioI Chern 262, 8532-8536). Mutagenesis of these cysteine residues, however, resulted in only a slight decrease in enzyme activity. Likewise, the recombinant human enzyme was completely resistant to attempted chemical modification of the putative reactive thiols. Although the human glutaminyl cyclase did not appear to have reactive thiols, it was sensitive to diethylpyrocarbonate and acetylimidazole, indicating the presence of functionally important histidine and tyrosine residues which could act as acid/base catalysts. Almost identical deuterium solvent isotope effect (1.2 vs 1.3) upon the reaction by the human and papaya enzymes, respectively, provides an evidence both animal and plant glutaminyl cyclases catalyze pyroglutamyl-peptide formation by intramolecular cyclization.

  • PDF

Construction of an expression vector with SV40 DNA in a mammalian cell (SV 40 DNA를 이용한 포유동물의 유전자 운반체 개발)

  • 정민혜;김상해;전희숙;노현모
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.165-172
    • /
    • 1987
  • An expression vector in a mammalian cell was constructed using the origin of replication (OR) and the promoters of SV40. The plasmid pSVOE was constructed by inserting SV40 DNA fragment (1, 118bp) containing SV40 OR and promoters into pBR322-1, and then a multiple cloning sequence was inserted at the immediate downstream of the late promoter of SV40 in the pSVOE vector. The plasmid was named pSVML. As a selection marker, thymidine kinase gene of herpes simplex virus with its promoter was inserted into EcoRI site of pSVML and the recombinant was named pSVML-TKp. To test the expression capacity of foreigen gene inserted at the multiple cloning site of pSVML, the thymidine kinase gene without its own promoter was inserted at the BamHI site of pSVML. The recombinant was named pSVML-TK. These plasmids, pSVML-TKp and pSVML-TK, were transfected into COS cells with calcium phosphate precipitation method. The thymidine kinase activity was significantly increased in both transfected cells.

  • PDF

Non-Synteny Regions in the Human Genome

  • Lee, Ki-Chan;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.8 no.2
    • /
    • pp.86-89
    • /
    • 2010
  • Closely related species share large genomic segments called syntenic regions, where the genomic elements such as genes are arranged co-linearly among the species. While synteny is an important criteria in establishing orthologous regions between species, non-syntenic regions may display species-specific features. As the first step in cataloging human- or primate- specific genomic elements, we surveyed human genomic regions that are not syntenic with any other non-primate mammalian genomes sequenced so far. Based on the data compiled in Ensembl databases, we were able to identify 10 such regions located in eight different human chromosomes. Interestingly, most of these highly human- or primate- specific loci are concentrated in subtelomeric or pericentromeric regions. It has been reported that subtelomeric regions in human chromosomes are highly plastic and filled with recently shuffled genomic elements. Pericentromeric regions also show a great deal of segmental duplications. Such genomic rearrangements may have caused these large human- or primate- specific genome segments.

Transfer of Xenomitochondria Containing the Entire Mouse Mitochondrial Genome into a Genetically Modified Yeast Expressing Mitochondrial Transcription Factor A

  • Yoon, Young Geol
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1290-1296
    • /
    • 2020
  • Recently, it was reported that entire mammalian mtDNA genomes could be transplanted into the mitochondrial networks of yeast, where they were accurately and stably maintained without rearrangement as intact genomes. Here, it was found that engineered mtDNA genomes could be readily transferred to and steadily maintained in the mitochondria of genetically modified yeast expressing the mouse mitochondrial transcription factor A (Tfam), one of the mitochondrial nucleoid proteins. The transferred mtDNA genomes were stably retained in the Tfam-expressing yeast cells for many generations. These results indicated that the engineered mouse mtDNA genomes introduced in yeast mitochondria could be relocated into the mitochondria of other cells and that the transferred genomes could be maintained within a mitochondrial environment that is highly amenable to mimicry of the biological conditions in mammalian mitochondria.

The Emergence of Behavioral Testing of Fishes to Measure Toxicological Effects

  • Brooks, Janie S.
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Historically, research in toxicology has utilized non-human mammalian species, particularly rats and mice, to study in vivo the effects of toxic exposure on physiology and behavior. However, ethical considerations and the overwhelming increase in the number of chemicals to be screened has led to a shift away from in vivo work. The decline in in vivo experimentation has been accompanied by an increase in alternative methods for detecting and predicting detrimental effects: in vitro experimentation and in silico modeling. Yet, these new methodologies can not replace the need for in vivo work on animal physiology and behavior. The development of new, non-mammalian model systems shows great promise in restoring our ability to use behavioral endpoints in toxicological testing. Of these systems, the zebrafish, Danio rerio, is the model organism for which we are accumulating enough knowledge in vivo, in vitro, and in silico to enable us to develop a comprehensive, high-throughput toxicology screening system.

Biotransformation of Arylnitroso Compound by Mammalian 1,4-Benzoquinone Reductase (포유동물 1,4-벤조퀴논 환원효소에 의한 아릴니트로소 화합물의 생변환)

  • 김경순;신해용
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.281-287
    • /
    • 2002
  • Quinone reductase was purified to homogeneity from bovine liver and the purified enzyme catalyzed the reduction of phenanthrenequinone as well as benzo- and naphthoquinones. The enzyme catalyzed the biotransformation of arylnitroso nitroso compound and the reaction product was identified by TLC, GC, CC-MS and NMR. The reaction was almost entirely inhibitable by Cibacron blue 3GA or dicumarol, potent inhibitors of mammalian quinone reductase.

Effect of Glycerophospholipid on Oleate-Dependent Phospholipase D in Mammalian Source

  • 김명주;김봉섭;이상윤;손정원;김철용;최명선;최명운
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1204-1207
    • /
    • 1997
  • Effects of exogenous glycerophospholipids on oleate-dependent phospholipase D (PLD) activity were studied in lymphocytic mouse leukemia L1210 cells and in solubilized microsomal phospholipase D of rat brain. Among the phospholipids tested phosphatidic acid had the most stimulatory effects on both PLD activities up to about 3 folds. Lysophosphatidic acid also showed promoting effect on microsomal PLD activity but much less on L1210 cells compared to that of phosphatidic acid. While phosphatidylethanolamine increased PLD activity slightly, phosphatidylinositides were nearly ineffective in the tested sources. The stimulatory effect of phosphatidic acid observed can be utilized to improve the in vitro assay system for oleate-dependent PLD in mammalian sources.

Role of Type 1 Inositol 1,4,5-triphosphate Receptors in Mammalian Oocytes

  • Yoon, Sook Young
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • The ability of oocytes to undergo normal fertilization and embryo development is acquired during oocyte maturation which is transition from the germinal vesicle stage (GV), germinal vesicle breakdown (GVBD) to metaphase of meiosis II (MII). Part of this process includes redistribution of inositol 1, 4, 5-triphosphate receptor (IP3R), a predominant $Ca^{2+}$ channel on the endoplasmic reticulum membrane. Type 1 IP3R (IP3R1) is expressed in mouse oocytes dominantly. At GV stage, IP3R1 are arranged as a network throughout the cytoplasm with minute accumulation around the nucleus. At MII stage, IP3R1 diffuses to the entire cytoplasm in a more reticular manner, and obvious clusters of IP3R1 are observed at the cortex of the egg. This structural reorganization provides acquisition of $[Ca^{2+}]_i$ oscillatory activity during fertilization. In this review, general properties of IP3R1 in somatic cells and mammalian oocyte are introduced.