DOI QR코드

DOI QR Code

The Emergence of Behavioral Testing of Fishes to Measure Toxicological Effects

  • Brooks, Janie S. (Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • 발행 : 2009.03.01

초록

Historically, research in toxicology has utilized non-human mammalian species, particularly rats and mice, to study in vivo the effects of toxic exposure on physiology and behavior. However, ethical considerations and the overwhelming increase in the number of chemicals to be screened has led to a shift away from in vivo work. The decline in in vivo experimentation has been accompanied by an increase in alternative methods for detecting and predicting detrimental effects: in vitro experimentation and in silico modeling. Yet, these new methodologies can not replace the need for in vivo work on animal physiology and behavior. The development of new, non-mammalian model systems shows great promise in restoring our ability to use behavioral endpoints in toxicological testing. Of these systems, the zebrafish, Danio rerio, is the model organism for which we are accumulating enough knowledge in vivo, in vitro, and in silico to enable us to develop a comprehensive, high-throughput toxicology screening system.

키워드

참고문헌

  1. Alcock, J. (2005), Animal behavior: an evolutionary approach (8th edition), Sinauer Associates, Sunderland, MA
  2. Aleström, P., Holter, J.L. and Nourizadeh-Lillabadi, R. (2006), Zebrafish in functional genomics and aquatic biomedicine, Trends Biotechnol. 24, 15-21 https://doi.org/10.1016/j.tibtech.2005.11.004
  3. Battershill, J.M. (2005), Toxicogenomics: regulatory perspective on current position, Hum Exp Toxicol., 24, 35-40 https://doi.org/10.1191/0960327105ht495oa
  4. Best, J.D., Berghmans, S., Hunt, J.J., Clarke, S.C., Fleming, A., Goldsmith, P. and Roach, A.G. (2008), Non-associative learning in larval zebrafish. Neuropsychopharmacology,33, 1206-1215 https://doi.org/10.1038/sj.npp.1301489
  5. Bhogal, N., Grindon, C., Combes, R. and Balls, M. (2005), Toxicity testing: creating a revolution based on new technologies, Trends Biotechnol, 23, 299-307 https://doi.org/10.1016/j.tibtech.2005.04.006
  6. Brooks, J., MacPhail, R., Hunter, D.L., Padnos, B. and Padilla, S. (2008), Characterization of locomotor activity of zebrafish larvae: temporal variability and photoresponse, The Toxicologist CD - An official Journal of the Society of Toxicology, Volume 102, Number S-1, Abstract 2189
  7. Budick, S.A. and O'Malley, D.M. (2000), Locomotor repertoire of the larval zebrafish: Swimming, turning and prey capture, J. Exp. Biol., 203, 2565-2579
  8. Burgess, H.A. and Granato, M. (2007), Modulation of locomotor activity in larval zebrafiish during light adaptation, J. Exp. Biol., 210, 2526-2539 https://doi.org/10.1242/jeb.003939
  9. Carere, A., Stammati, A. and Zucco, F. (2002), In vitro toxicology methods: impact on regulation from technical and scientific advancements, Toxicol. Lett., 127, 153-160 https://doi.org/10.1016/S0378-4274(01)00495-7
  10. Chen, J.J. (2007), Key aspects of analyzing microarray geneexpression data, Pharmacogenomics, 8, 473-482 https://doi.org/10.2217/14622416.8.5.473
  11. Curren, R.D., Harebell, J.W. and Southee, J.A. (1997), Current approaches to the in vitro prediction of ocular irritation, Comments Toxicology, 6, 71-85
  12. Dowling, J.E. (2002), Fishing for novel genes, Proc. Am. Phil. Soc., 146, 337-347
  13. Drapeau, P., Saint-Amant, L., Buss, R.R., Chong, M., McDearmid, J.R. and E. Brustein. (2002), Development of the locomotor network in zebrafish, Prog. Neurobiol., 68,85-111 https://doi.org/10.1016/S0301-0082(02)00075-8
  14. Easter, S.S. Jr. and Nicola, G.N. (1996). The development ofvision in the zebrafish (Danio rerio). Dev. Biol., 180, 646-663 https://doi.org/10.1006/dbio.1996.0335
  15. El-Masri, H.A. (2007), Experimental and mathematical model ing methods for the investigation of toxicological interactions, Toxicol. Appl. Pharmacol., 223, 148-154 https://doi.org/10.1016/j.taap.2006.07.009
  16. Glover, T. (2003), Developing operational definitions and measuring interobserver reliability using house crickets (Acheta domesticus) in Exploring Animal Behavior in Laboratory and Field: An Hypothesis-testing Approach to the Development, Causation, Function, and Evolution of Animal Behavior (B.J. Ploger and K. Yasukawa, Eds.), Academic Press, New York, pp. 31-40
  17. Guo, S. (2004), Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain. Behav., 3, 63-74 https://doi.org/10.1046/j.1601-183X.2003.00053.x
  18. Hill, A.J., Teraoka, H., Heideman, W. and Peterson, R.E.(2005), Zebrafish as a model vertebrate for investigating chemical toxicity, Toxicol. Sci., 86, 6-19 https://doi.org/10.1093/toxsci/kfi110
  19. Hoffmann, S, and Hartung, T. (2006), Toward an evidencebased toxicology, Hum Exp. Toxicol., 25, 497-513 https://doi.org/10.1191/0960327106het648oa
  20. Kimmel, C.B., Patterson, J. and Kimmel, R.O. (1974), The development and behavioral characteristics of the startle response in the zebra fish, Dev. Psychobiol., 7, 47-60 https://doi.org/10.1002/dev.420070109
  21. Kulig, B., Alleva, E., Bignami, G., Cohn, J., Cory-Slechta, D., Landa, V., O'Donoghue, J. and Peakall, D. (1996), Animal behavioral methods in neurotoxicity assessment: SCGMSEC joint report, Environ Health Perspect, 104(Suppl 2), 193-204 https://doi.org/10.1289/ehp.96104s2193
  22. Langman, L.J. and Kapur, B.M. (2006), Toxicology: then and now, Clin Biochem., 39, 498–510 https://doi.org/10.1016/j.clinbiochem.2006.03.004
  23. Levin, E.D., Swain, H.A., Donerly, S. and Linney, E. (2004), Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior, Neurotoxicol. Teratol., 26, 719-723 https://doi.org/10.1016/j.ntt.2004.06.013
  24. Liebsch, M. and Spielmann, H. (2002), Currently available in vitro methods used in the regulatory toxicology, Toxicol.Lett., 127, 127-134 https://doi.org/10.1016/S0378-4274(01)00492-1
  25. Lieschke, G.J. and Currie, P.D. (2007), Animal models of human disease: Zebrafish swim into view, Nat. Rev. Genet., 8, 353-367 https://doi.org/10.1038/nrg2091
  26. Lockwood, B., Bjerke, S., Kobayashi, K. and Guo, S. (2004), Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening, Pharmacol. Biochem. Behav., 77, 647-54 https://doi.org/10.1016/j.pbb.2004.01.003
  27. MacPhail, R.C. (1992), Principles of identifying and characterizing neurotoxicity, Toxicol. Lett., 64-65, 209-215 https://doi.org/10.1016/0378-4274(92)90191-L
  28. MacPhail, R.C., Brooks, J., Hunter, D.L., Padnos, B., Irons, T.D. and Padilla, S. (2009), Locomotion in larval zebrafish: influence of time of day, lighting, ethanol. Neurotoxicology,30, 52-58 https://doi.org/10.1016/j.neuro.2008.09.011
  29. Martin, P. and Bateson, P. (2007), Measuring behavior: an introductory guide (2nd edition), Cambridge University Press, Cambridge, UK
  30. Marzin, D. (1999), New approaches to estimating the muta Marzin, D. (1999), New approaches to estimating the mutagenic potential of chemicals, Cell. Biol. Toxicol., 15, 359-365 https://doi.org/10.1023/A:1007697715084
  31. Meyer, O. (2003), Testing and assessment strategies, including alternative and new approaches, Toxicol. Lett., 140- 141, 21-30 https://doi.org/10.1016/S0378-4274(02)00492-7
  32. Mikl$\acute{o}$si, A. and Andrew, R.J. (2006). The zebrafish as a model for behavioral studies. Zebrafish, 3, 227-34 https://doi.org/10.1089/zeb.2006.3.227
  33. Orger, M.B., Gahtan, E., Muto, A., Page-McCaw, P., Smear, M.C. and Baier, H. (2004), Behavioral screening assays in zebrafish, Methods Cell. Biol., 77, 53-68 https://doi.org/10.1016/S0091-679X(04)77003-X
  34. Peterson, R.T., Nass, R., Boyd, W.A., Freedman, J.H., Dong, K. and Narahashi, T. (2008), Use of non-mammalian alternative models for neurotoxicological study, Neurotoxicology, 29, 546-555 https://doi.org/10.1016/j.neuro.2008.04.006
  35. Ploger, B.J. and Yasukawa, K. (2004), Exploring Animal Behavior in Laboratory and Field: An Hypothesis-testing Approach to the Development, Causation, Function, and Evolution of Animal Behavior, Academic Press, New York
  36. Renner, M.J. and Renner, C.H. (2005), Watching, operational definitions, and observing in Learning the Skills of Research: Animal Behavior Exercises in the Laboratory and Field (E.M. Jakob and M. Hodge, Eds.), Sinauer Associates, Sunderland, MA, pp. 15-18
  37. Saint-Amant, L. and Drapeau, P. (1998), Time course of the development of motor behaviors in the zebrafish embryo, J. Neurobiol. 37, 622-632 https://doi.org/10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S
  38. Simon-Hettich, B., Rothfuss, A. and Steger-Hartmann, T.(2006), Use of computer-assisted prediction of toxic effects of chemical substances, Toxicology, 224, 156-162 https://doi.org/10.1016/j.tox.2006.04.032
  39. Shaw, M. (2005), The use of histologically defined specific biomarkers in drug development with special reference to the glutathione S-transferases, Cancer. Biomarkers, 1, 69-74 https://doi.org/10.3233/CBM-2005-1108
  40. Tilson, H.A. (1993), Neurobehavioral methods used in neurotoxicological research, Toxicol. Lett, 68, 231-240 https://doi.org/10.1016/0378-4274(93)90134-J
  41. Weber, D.N. (2006), Dose-dependent effects of developmental mercury exposure on C-start escape responses of larval zebrafish Danio rerio, J. Fish Biol., 69, 75-94 https://doi.org/10.1111/j.1095-8649.2006.01068.x
  42. Westerfield, M. (2000), The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), University of Oregon Press, Eugene, OR
  43. White, D.W., Dill, L.M. and Crawford, C.B. (2007), A common, conceptual framework for behavioral ecology and evolutionary psychology, Evolutionary Psychology, 5, 275-288
  44. Zeddies, D.G. and Fay, R.R. (2005), Development of the acoustically evoked behavioral response in zebrafish to pure tones, J. Exp. Biol., 208, 1363-1372 https://doi.org/10.1242/jeb.01534
  45. Zon, L.I. and Peterson, R.T. (2005), In vivo drug discovery in the zebrafish, Nat. Rev. Drug. Discov., 4, 35-44 https://doi.org/10.1038/nrd1606

피인용 문헌

  1. Dynamics of Hexavalent Chromium in Four Types of Aquaculture Ponds and Its Effects on the Morphology and Behavior of Cultured Clarias gariepinus (Burchell 1822) vol.33, pp.2, 2017, https://doi.org/10.5487/TR.2017.33.2.119