Browse > Article
http://dx.doi.org/10.5808/GI.2010.8.2.086

Non-Synteny Regions in the Human Genome  

Lee, Ki-Chan (Department of Bioinformatics & Life Science, Soongsil University)
Kim, Sang-Soo (Department of Bioinformatics & Life Science, Soongsil University)
Abstract
Closely related species share large genomic segments called syntenic regions, where the genomic elements such as genes are arranged co-linearly among the species. While synteny is an important criteria in establishing orthologous regions between species, non-syntenic regions may display species-specific features. As the first step in cataloging human- or primate- specific genomic elements, we surveyed human genomic regions that are not syntenic with any other non-primate mammalian genomes sequenced so far. Based on the data compiled in Ensembl databases, we were able to identify 10 such regions located in eight different human chromosomes. Interestingly, most of these highly human- or primate- specific loci are concentrated in subtelomeric or pericentromeric regions. It has been reported that subtelomeric regions in human chromosomes are highly plastic and filled with recently shuffled genomic elements. Pericentromeric regions also show a great deal of segmental duplications. Such genomic rearrangements may have caused these large human- or primate- specific genome segments.
Keywords
synteny; pericentric; subtelomeric; genome rearrangement; mammalian genomes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Riethman, H., Ambrosini, A., and Paul, S. (2005). Human subtelomere structure and variation. Chromosome Res. 13, 505-515.   DOI
2 Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D., and Miller, W. (2003). Human-mouse alignments with BLASTZ. Genome Res. 13, 103-107.   DOI
3 Taylor, J., Schenck, I., Blankenberg, D., and Nekrutenko, A. (2007). Using galaxy to perform large-scale interactive dataanalyses. Current protocols in bioinformatics, Chapter 10, Unit 10.5.
4 CSAC (Chimpanzee Sequencing and Analysis Consortium) (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69-87.   DOI
5 Flicek, P., Aken, B.L., Ballester, B., Beal, K., Bragin, E., Brent, S., Chen, Y., Clapham, P., Coates, G., Fairley, S., Fitzgerald, S., Fernandez-Banet, J., Gordon, L., Gräf, S., Haider, S., Hammond, M., Howe, K., Jenkinson, A., Johnson, N., Kähäri, A., Keefe, D., Keenan, S., Kinsella, R., Kokocinski, F., Koscielny, G., Kulesha, E., Lawson, D., Longden, I., Massingham, T., McLaren, W., Megy, K., Overduin, B., Pritchard, B., Rios, D., Ruffier, M., Schuster, M., Slater, G., Smedley, D., Spudich, G., Tang, Y.A., Trevanion, S., Vilella, A., Vogel, J., White, S., Wilder, S.P., Zadissa, A., Birney, E., Cunningham, F., Dunham, I., Durbin, R., Fernandez-Suarez, X.M., Herrero, J., Hubbard, T.J., Parker, A., Proctor, G., Smith, J., and Searle, S.M. (2010). Ensembl's 10th year. Nucl. Acids Res., Database issue, D557-D562.
6 IHGCS (International Human Genome Sequencing Consortium) (2004). Finishing the euchromatic sequence of the human genome. Nature 431, 931-945.   DOI   ScienceOn
7 IHGSC (International Human Genome Sequencing Consortium) (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921.   DOI
8 Rhead, B., Karolchik, D., Kuhn, R.M., Hinrichs, A.S., Zweig, A.S., Fujita, P.A., Diekhans, M., Smith, K.E., Rosenbloom, K.R., Raney, B.J., Pohl, A., Pheasant, M., Meyer, L.R., Learned, K., Hsu, F., Hillman-Jackson, J., Harte, R.A., Giardine, B., Dreszer, T.R., Clawson, H., Barber, G.P., Haussler, D., and Kent, W.J. (2010). The UCSC Genome Browser database: update 2010. Nucl. Acids Res. , Database issue, D613-D619.
9 Murphy, W.J., Larkin, D.M., Everts-van der Wind, A., Bourque, G., Tesler, G., Auvil, L., Beever, J.E., Chowdhary, B.P., Galibert, F., Gatzke, L., Hitte, C., Meyers, S.N., Milan, D., Ostrander, E.A., Pape, G., Parker, H.G., Raudsepp, T., Rogatcheva, M.B., Schook, L.B., Skow, L.C., Welge, M., Womack, J.E., O'brien, S.J., Pevzner, P.A., and Lewin, H.A. (2005). Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Sci. 309, 613-617.   DOI
10 Peng, Q., Pevzner, P.A., and Tesler, G. (2006). The fragile breakage versus random breakage models of chromosome evolution. PLoS Computational Biol. 2, e14.   DOI
11 Bourque, G., Pevzner, P.A., and Tesler, G. (2004). Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Res. 14, 507-516.   DOI
12 Ambrosini, A., Paul, S., Hu, S., and Riethman, H. (2007). Human subtelomeric duplicon structure and organization. Genome Biol. 8, R151.   DOI