• Title/Summary/Keyword: malt extract

Search Result 245, Processing Time 0.025 seconds

Effects of Aqueous Medicinal Herb Extracts and Aqueous Fermented Extracts on Alcohol-Metabolizing Enzyme Activities (약용식물의 열수추출물과 적정 조성추출물 및 그 발효물이 알콜대사 효소활성에 미치는 영향)

  • Lee, Ka-Soon;Kim, Gwan-Hou;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Mi-Yeon;Kim, Mee-Ree
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.259-265
    • /
    • 2009
  • To develop an effective anti-hangover product, hot-water extracts of 25 medicinal herbs were screened for inhibition or activation of alcohol dehydrogenase(ADH) and acetaldehyde dehydrogenase(ALDH), and 12 herbs were selected for further study. Chosen medicinal herb extracts(CMHEs) were fermented by Lactobacillus delbruechii subspecies lactis for 10 days at $35^{\circ}C$ after saccharification with nuruk(malt inoculated by 5 types of microbs) for 72 hours at $35^{\circ}C$ and both CMHEs and fermented CMHEs(FCMHEs) were explored for anti-hangover effects in vitro. We found significant ADH inhibition by hot-water extracts of Pueraria thunbergiana, Hovenia dulcis Thunb, Lycium chinense, Glycyrrhiza uralensis, Acanthopanax sessiliflorus, Liriope platyphylla, and Ixeris dentata, and significant ALDH activation by extracts of Acanthopanax sessiliflorus, Lycium chinense, Ixeris dentata, and Polypori umbellati of the Polyporaceae. The ADH effects on CMHE and FCMHE were -20.22% and -62.63% of control values, and the ALDH effects 173.20% and 280.17%, respectively. In rats given 20%(v/v) alcohol(15 mL/kg), FCMHEs significantly decreased blood acetaldehyde concentrations on 3 hours after ethanol administration, in a dose-dependent manner(p<0.05). Notably, blood acetaldehyde concentrations were markedly reduced in animals given FCMHEs(400 mg/kg) compared to levels seen in rats receiving CADB(commercial alcohol detoxification beverage). Thus, anti-hangover effects were promoted by fermentation of certain medicinal herb extracts.

Cultural Characteristics of Ectomycorrhizal Mushrooms

  • Jeon, Sung-Min;Ka, Kang-Hyeon
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.16-16
    • /
    • 2015
  • Ectomycorrhizal (ECM) mushrooms play a major role in plant growth promotion through symbiotic association with roots of forest trees. They also provide an economically important food resource to us and therefore they have been studied for their artificial cultivation for decades in Korea. We have secured bio-resources of ECM mushrooms from Korean forests and performed their physiological studies. To investigate the cultural characteristics, the fungi were cultured under different conditions (medium, temperature, pH of the medium, inorganic nitrogen source). More than 90% of total 160 strains grew on three solid media (potato dextrose agar, PDA; sabouraud dextrose agar, SDA; modified Melin-Norkrans medium, MMN). The rate of mycelial growth on malt extract agar (MEA) was lower than those of three media (PDA, SDA, MMN). None of the Tricholomataceae strains grew on MEA. Many strains of ECM mushrooms were able to grow at the temperature range of $15{\sim}25^{\circ}C$ on PDA, while they showed poor growth at $10^{\circ}C$ or $30^{\circ}C$. In particular, the growth rates of both Gomphaceae and Tricholomataceae were significantly lower at $10^{\circ}C$ than at $30^{\circ}C$. The optimal pH of many strains was pH 5.0 when they cultured in potato dextrose broth (PDB). Fifty-seven percent of tested strains grew well on medium containing ammonium source than nitrate source. Many strains of Tricholomataceae showed a notable growth on ammonium medium than nitrate medium. Twenty-three percent of strains preferred nitrate source than ammonium source for their mycelial growth. The production and activity of two enzymes (cellulase and laccase) by ECM fungi were also assayed on the enzyme screening media containing CMC or ABTS. Each strains exhibited different levels of enzymatic activities as well as enzyme production. The number of laccase-producing strains was less than that of cellulase-producing strains. We found that 77% of tested strains produced both cellulase and laccase, whereas 2% of strains did not produce any enzymes. The morphological characteristics of mycelial colony were also examined on four different solid media. Yellow was a dominant color in mycelial colony and followed by white and brown on all culture media. ECM mushrooms formed mycelial colonies with a single or multiple colors within a culture medium depending on the strains and culture media. The most common shape of mycelial colony was a circular form on all media tested. Other families except for Amanitaceae formed an irregular colony on MMN than PDA. All strains of Tricholomataceae did not form a filamentous colony on all media. The pigmentation of culture media by mycelial colonies was observed in more than 50% of strains tested on both PDA and SDA. The degree of pigmentation on PDA or SDA was higher than MMN and brown color was dominant than yellow color. The production of exudates from mycelial colony was higher on PDA than MMN. Brown exudates were mainly produced by many strains on PDA or SDA, whereas transparent exudates were mainly produced by strains on MMN. We observed the mycelial colonies with a single or multiple textures in just one culture plate. Wrinkled or uneven colony surfaces were remarkably observed in many strains on PDA or SDA, while an even colony surface was observed in many strains on MMN. Sixty percent of Tricholomaceae strains formed wrinkled surface on PDA. However, they did not form any wrinkle on MMN plate. Cottony texture was observed in mycelia colonies of many strains. Velvety texture was often observed in the mycelial colonies on SDA than PDA and accounted for 60% of Suillaceae strains on SDA.

  • PDF

Physicochemical and sensory quality characteristics of various rice Jochung products (각종 쌀 조청의 이화학적 및 관능학적 품질 특성)

  • Wee, Kyung Il;Kang, Yoon Han;Lee, Keun Taik
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.804-810
    • /
    • 2016
  • This study aimed to compare the quality characteristics of developed rice Jochung (E) with those of commercial-rice Jochung (A, B, C, and D). The total soluble solid, reducing sugar, and dextrose equivalent of developed rice Jochung were $80^{\circ}Brix$, 44.53%, and 56.94%, respectively. The pH and titrable acidity were 6.25 and 0.19%, respectively. The color difference value (${\Delta}E$) of developed rice Jochung was 74.42, which was significantly lower than the other samples investigated. The light transmittance and total polyphenol contents of developed rice Jochung were 56.4%T and 108.23 mg GAE/100 g, respectively. The adhesiveness values of various commercial-rice Jochung products were 29.0~66.0 sec, while that of developed-rice Jochung was 61 sec, showing good textural properties for use in manufacturing Hangwa, a Korean traditional cookie. The electron-donating values of various rice Jochung were 20.4~50.3%, among which the developed-rice Jochung showed the highest value. The reducing powers of various rice Jochung products were 0.44~0.72, while that of the developed product was 0.72, which was significantly higher than the other values. Sensory evaluation revealed that the color scores of developed- and commercial-rice Jochung products were 6.70~6.80. Flavor scores of rice Jochung products ranged from 6.00 to 7.00. Taste and mouth feeling scores of developed-rice Jochung did not significantly differ from those of commercial Jochung products. Compared to commercial-rice Jochung products, developed-rice Jochung made with malt extract exhibited high polyphenols content. However, there were no significant differences in the overall acceptability scores between commercial-rice Jochung products and the developed product. The developed-rice Jochung analyzed in this study may be useful as a traditional sweetener for various Hangwa products as a substitute for corn syrup or Jochung.

A New Malting Barley Variety, "Daho" with High Yielding and BaYMV Resistance (맥주보리 호위축병저항성 및 다수성 "다호")

  • Hyun, Jong-Nae;Kim, Mi-Jung;Kim, Yang-Kil;Lee, Mi-Ja;Choi, Jae-Sung;Kim, Hyun-Tae;Han, Sang-Ik;Ko, Jong-Min;Lim, Sea-Gyu;Park, Jong-Chul;Kim, Jung-Gon;Suh, Sae-Jung;Kim, Dae-Ho;Kang, Sung-Ju;Kim, Sung-Taeg
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.333-337
    • /
    • 2009
  • A new malting barley variety, "Daho", was developed from the cross between "Milyang85 and Suwon335" at the Department of Rice and Winter Cereal Crop (DRWCC) NICS, in 2007. An elite line, YMB2064-B-8-2-4-1-1, was selected in 2004 and designated as "Milyang134". It showed good agronomic performance in the regional adaptation yield trials (RYT) from 2005 to 2007 and was released with the name of "Daho", having high yielding and BaYMV resistance. The average heading and maturing dates of "Daho" were April 19 and May 27, which were 2 days later and 1 day earlier than those of "Jinyang", leading variety, at the regional adaptation yield trials (RYT), respectively. "Daho" had longer culm length (84 cm), more spikes per $m^2$ (915) and higher 1,000 grain weight (39.2 g) than those of "Jinyang" in paddy field condition. "Daho" was showed resistance to BaYMV at the regions of Naju, Jinju, and Milyang but moderately resistance at Iksan. However, the response of "Daho" to other environmental stresses was similar to "Jinyang". The yields of "Daho" at upland and paddy fields were about 5.20 MT/ha, 4.81 MT/ha, respectively, which is about 38%, 25% higher than those of "Jinyang" in the regional adaptation yield trials (RYT), respectively. It has higher grain assortment, germination capacity, water sensitivity and Kolback index but lower malt extract, diastatic power and filtration speed than those of "Jinyang".

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF