Journal of the Korea Institute of Information Security & Cryptology
/
v.26
no.5
/
pp.1313-1322
/
2016
Recently, many virus and hacking attacks on public organizations and financial institutions by internet are becoming increasingly intelligent and sophisticated. The Advanced Persistent Threat has been considered as an important cyber risk. This attack is basically accomplished by spreading malicious codes through complex networks. To detect and extract PE files in smart manufacturing industry networks, an efficient processing method which is performed before analysis procedure on malicious codes is proposed. We implement a preprocessor of open intrusion detection system Snort for fast extraction of PE files and install on a hardware sensor equipment. As a result of practical experiment, we verify that the network sensor can extract the PE files which are often suspected as a malware.
Journal of the Korea Society of Computer and Information
/
v.18
no.11
/
pp.125-136
/
2013
In this paper, we proposed SSL VPN-based network access control technology which can verify user authentication and integrity of user terminal. Using this technology, user can carry out a safety test to check security services such as security patch and virus vaccine for user authentication and user terminal, during the VPN-based access to an internal network. Moreover, this system protects a system from external security threats, by detecting malicious codes, based on behavioral patterns from user terminal's window API information, and comparing the similarity of sequential patterns to improve the reliability of detection.
Recent developments in machine learning have attracted a lot of attention for techniques such as machine learning and deep learning that implement artificial intelligence. In this paper, binary malicious code using deep learning based R-CNN is imaged and the feature is extracted from the image to classify the family. In this paper, two steps are used in deep learning to image malicious code using CNN. And classify the characteristics of the family of malicious codes using R-CNN. Generate malicious code as an image, extract features, classify the family, and automatically classify the evolution of malicious code. The detection rate of the proposed method is 93.4% and the accuracy is 98.6%. In addition, the CNN processing speed for image processing of malicious code is 23.3 ms, and the R-CNN processing speed is 4ms to classify one sample.
Journal of the Korea Society of Computer and Information
/
v.25
no.11
/
pp.123-129
/
2020
Recently, cybercrime has become increasingly difficult to track by applying new technologies such as virtualization technology and distribution tracking avoidance. etc. Therefore, there is a limit to the technology of tracking distributors based on malicious code information through static and dynamic analysis methods. In addition, in the field of cyber investigation, it is more important to track down malicious code distributors than to analyze malicious codes themselves. Accordingly, in this paper, we propose a next-generation malicious code information collection architecture to efficiently track down malicious code distributors by converging traditional analysis methods and recent information collection methods such as OSINT and Intelligence. The architecture we propose in this paper is based on the differences between the existing malicious code analysis system and the investigation point's analysis system, which relates the necessary elemental technologies from the perspective of cybercrime. Thus, the proposed architecture could be a key approach to tracking distributors in cyber criminal investigations.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.1
/
pp.105-115
/
2019
Recently, intelligent Android malicious codes have become difficult to detect malicious behavior by static analysis alone. Malicious code with SO file, dynamic loading, and string obfuscation are difficult to extract information about original code even with various tools for static analysis. There are many dynamic analysis methods to solve this problem, but dynamic analysis requires rooting or emulator environment. However, in the case of dynamic analysis, malicious code performs the rooting and the emulator detection to bypass the analysis environment. To solve this problem, this paper investigates a variety of root detection schemes and builds an environment for bypassing the rooting detection in real devices. In addition, SDK code hooking module for Android malicious code analysis is designed using Xposed, and intent tracking for code flow, dynamic loading file information, and various API information extraction are implemented. This work will contribute to the analysis of obfuscated information and behavior of Android Malware.
Malicious codes have been widely documented and detected in information security breach occurrences of Microsoft Windows platform. Legacy information security systems are particularly vulnerable to breaches, due to Window kernel-based malicious codes, that penetrate existing protection and remain undetected. To date there has not been enough quality study into and information sharing about Windows kernel and inner code mechanisms, and this is the core reason for the success of these codes into entering systems and remaining undetected. This paper focus on classification and formalization of type target and mechanism of various Windows kernel-based attacks, and will present suggestions for effective response methodologies in the categories of, "Kernel memory protection", "Process & driver protection" and "File system & registry protection". An effective Windows kernel protection system will be presented through the collection and analysis of Windows kernel and inside mechanisms, and through suggestions for the implementation methodologies of unreleased and new Windows kernel protection skill. Results presented in this paper will explain that the suggested system be highly effective and has more accurate for intrusion detection ratios, then the current legacy security systems (i.e., virus vaccines and Windows IPS, etc) intrusion detection ratios. So, It is expected that the suggested system provides a good solution to prevent IT infrastructure from complicated and intelligent Windows kernel attacks.
In these days, malicious codes have become reality and evolved significantly to become one of the greatest threats to the modern society where important information is stored, processed, and accessed through the internet and the computers. Computer virus is a common type of malicious codes. The standard techniques in anti-virus industry is still based on signatures matching. The detection mechanism searches for a signature pattern that identifies a particular virus or stain of viruses. Though more accurate in detecting known viruses, the technique falls short for detecting new or unknown viruses for which no identifying patterns present. To cope with this problem, anti-virus software has to incorporate the learning mechanism and heuristic. In this paper, we propose a fuzzy diagnosis system(FDS) using fuzzy c-means algorithm(FCM) for the cluster analysis and a decision status measure for giving a diagnosis. We compare proposed system FDS to three well known classifiers-KNN, RF, SVM. Experimental results show that the proposed approach can detect unknown viruses effectively.
At the present stage of the fourth industrial revolution, machine learning and artificial intelligence technologies are rapidly developing, and there is a movement to apply machine learning technology in the security field. Malicious code, including new and transformed, generates an average of 390,000 a day worldwide. Statistics show that security companies ignore or miss 31 percent of alarms. As many malicious codes are generated, it is becoming difficult for humans to detect all malicious codes. As a result, research on the detection of malware and network intrusion events through machine learning is being actively conducted in academia and industry. In international conferences and journals, research on security data analysis using deep learning, a field of machine learning, is presented. have. However, these papers focus on detection accuracy and modify several parameters to improve detection accuracy but do not consider the ratio of dataset. Therefore, this paper aims to reduce the cost and resources of many machine learning research by finding the ratio of dataset that can derive the highest detection accuracy in CNN Mobile net-based malware detection model.
Recently, the incidence rate of malicious codes is over tens of thousands of cases, and it is known that it is almost impossible to detect/respond all of them. This study proposes a method for detecting multiple behavior patterns based on a graph database as a new method for dealing with malicious codes. Traditional dynamic analysis techniques and has applied a method to design and analyze graphs of representative associations malware pattern(process, PE, registry, etc.), another new graph model. As a result of the pattern verification, it was confirmed that the behavior of the basic malicious pattern was detected and the variant attack behavior(at least 5 steps), which was difficult to analyze in the past. In addition, as a result of the performance analysis, it was confirmed that the performance was improved by about 9.84 times or more compared to the relational database for complex patterns of 5 or more steps.
Malicious codes uses generic unpacking technique to make it hard for analyzers to detect their programs. Recently their has been several researches about generic packet to prevent or detect these techniques. And they try to focus on the codes that repeats while generic packing is doing compression because generic packing technique executes after it is decompressed. And they try to focus on the codes that repeats while generic packing is doing compression because generic packing technique executes after it is decompressed. Therefore, this makes a interesting performance which shows a similar address value from the codes which are repeated several times what is different from the normal program codes. By dividing these codes into regularly separated areas we can find that the generic unpacking codes have a small entropy value compared to normal codes. Using this method, it is possible to identify any program if it is a generic unpacking code or not even though we do not know what kind of algorithm it uses. This paper suggests a way of disarming the generic codes by using the low value entropy value which comes out from the Opcode addresses when generic unpacking codes try to decompress.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.