스마트 폰의 보급률이 증가함에 따라 스마트 폰을 대상으로 하는 악성코드들이 증가하고 있다. 360 Security의 스마트 폰 악성코드 통계에 따르면 2015년 4분기에 비해 2016년 1분기에 악성코드가 437% 증가하는 수치를 보였다. 특히 이러한 스마트 폰 악성코드 유포의 주요 수단인 악성 어플리케이션들은 사용자 정보 유출, 데이터 파괴, 금전 갈취 등을 목적으로 하는데 운영 체제나 프로그래밍 언어가 제공하는 기능을 제어할 수 있게 해주는 인터페이스인 API에 의하여 동작하는 경우가 대부분이다. 본 논문에서는 정적 분석으로 도출한 어플리케이션 내 API의 패턴을 지도 학습 기법으로 머신에 학습하여 정상 어플리케이션과 악성 어플리케이션 내의 API 패턴의 유사도에 따라 악성 어플리케이션을 탐지하는 메커니즘을 제시하고 샘플 데이터에 대하여 해당 메커니즘을 사용하여 도출한 label 별 탐지율과 탐지율 개선을 위한 기법을 보인다. 특히, 제안된 메커니즘의 경우 신종 악성 어플리케이션의 API 패턴이 기존에 학습된 패턴과 일정 수준 유사한 경우 탐지가 가능하며 향후 어플리케이션의 다양한 feature를 연구하여 본 메커니즘에 적용한다면 anti-malware 체계의 신종 악성 어플리케이션 탐지에 사용될 수 있을 것이라 예상된다.
악성코드를 이용한 사이버 위협이 꾸준히 증가함에 따라 많은 보안 및 백신 관련 업체들이 악성코드 분석 및 탐지에 많은 노력을 기울이고 있다. 그러나 소프트웨어의 분석이 어렵도록 하는 난독화 기법이 악성코드에 적용되어 악성코드에 대한 빠른 대응이 어려운 실정이다. 특히 상용 난독화 도구는 빠르고 간편하게 변종 악성코드를 생성해 낼 수 있기 때문에 악성코드 분석가가 새로운 변종 악성코드의 출현 속도에 대응할 수 없도록 한다. 분석가가 빠르게 악성코드의 실제 악성행위를 분석하도록 하기 위해서는 난독화를 해제하는 역난독화 기술이 필요하다. 본 논문에서는 상용 난독화 도구인 Themida가 적용된 소프트웨어를 역난독화하는 일반적인 분석방법론을 제안한다. 먼저 Themida를 이용하여 난독화가 적용된 실행파일을 분석하여 알아낸 Themida의 동작 원리를 서술한다. 다음으로 DBI(Dynamic Binary Instrumentation) 프레임워크인 Pintool을 이용하여 난독화된 실행파일에서 원본 코드 및 데이터 정보를 추출하고, 이 원본 정보들을 활용하여 원본 실행파일에 가까운 형태로 역난독화할 수 있는 자동화 분석 도구 구현 결과에 대해 서술한다. 마지막으로 원본 실행파일과 역난독화한 실행파일의 비교를 통해 본 논문의 자동화 분석 도구의 성능을 평가한다.
본 논문은 해커가 정보절취 등을 목적으로 전자우편에 악성코드를 삽입 유포하는 공격 대응방안에 관한 연구로, 악성코드가 삽입된 전자우편은 정보유출 시(時) 트래픽을 암호화(Encoding)하는데 이를 복호화(Decoding) 하는 '분석모델'을 구현 및 제안한다. 또한 보안관제측면(네트워크)에서 해킹메일 감염시(時) 감염PC를 신속하게 탐지할 수 있는 '탐지기술 제작 방법론'을 연구하여 탐지규칙을 제작, 시뮬레이션 한 결과 효율적인 탐지성과를 보였다. 악성코드 첨부형 전자우편에 대한 대응책으로 공공기관이나 기업의 정보보안 담당자 PC사용자가 각자의 전산망 환경에 맞게 적용 가능한 보안정책을 제안함으로써 해킹메일 피해를 최소화하는데 도움이 되고자 한다.
최근 국가기관, 언론사, 금융권 등에 대하여 분산 서비스 거부(Distributed Denial of Service, DDoS) 공격, 악성코드 유포 등 무차별 사이버테러가 발생하고 있다. DDoS 공격은 네트워크 계층에서의 대역폭 소모를 주된 공격 방법으로 정상적인 사용자와 크게 다르지 않는 패킷을 이용하여 공격을 하기 때문에 탐지 및 대응이 어렵다. 이러한 인터넷 비정상적인 트래픽이 증가하여 네트워크의 안전성 및 신뢰성을 위협하고 있어 비정상 트래픽에 대한 발생 징후를 사전에 탐지하여 대응할 수 있는 방안의 필요성이 대두되고 있다. 본 연구에서는 비정상 트래픽 탐지 기법에 대한 현황 및 문제점을 분석하고, 예측방법인 추세 모형, 지수평활법, 웨이브렛 분석 방법 등을 비교 분석하여 인터넷 트래픽의 특성을 실시간으로 분석 및 예측이 가능한 가장 적합한 예측 모형을 이용한 탐지 방법을 제안하고자 한다.
현재 4차 산업혁명을 맞이하여 머신러닝과 인공지능 기술이 급속도로 발전하고 있으며 보안 분야에서도 머신러닝 기술을 응용하려는 움직임이 있다. 많은 악성코드가 생성됨에 따라 사람의 힘으로는 모든 악성코드를 탐지하기 어려워지고 있기 때문이다. 이에 따라 학계와 산업계에서는 머신러닝을 통해 악성코드나 네트워크 침입 이벤트를 탐지하는 것에 관한 연구가 활발히 진행되고 있으며 국제 학회와 저널에서는 머신러닝의 한 분야인 딥러닝을 이용한 보안데이터 분석 연구가 논문 발표되고 있다. 그러나 해당 논문들은 검출 정확도에 초점이 맞추어져 있고 검출 정확도를 높이기 위해 여러 파라미터들을 수정하지만 Dataset의 개수를 고려하지 않고 있다. 따라서 본 논문에서는 CNN Mobile net 기반 악성코드 탐지 모델에서 가장 높은 검출 정확도를 도출할 수 있는 Dataset의 개수을 찾아내어 많은 머신러닝 연구 진행에 비용과 리소스를 줄이고자 한다.
시그니처 기반 악성코드 탐지는 제로데이 취약점을 이용하거나 변형된 악성코드를 탐지하지 못하는 한계가 있다. 이를 극복하기 위해 N-gram을 이용하여 악성코드를 분류하는 연구들이 활발히 수행되고 있다. 기존 연구들은 높은 정확도로 악성코드를 분류할 수 있지만, Spectre와 같이 짧은 코드로 동작하는 악성코드는 식별하기 어렵다. 따라서 본 논문에서는 Spectre 공격 바이너리를 효과적으로 식별할 수 있도록 함수 단위 N-gram 비교 알고리즘을 제안한다. 본 알고리즘의 유효성을 판단하기 위해 165개의 정상 바이너리와 25개의 악성 바이너리에서 추출한 N-gram 데이터셋을 Random Forest 모델로 학습했다. 모델 성능 실험 결과, 25개의 Spectre 악성 함수의 바이너리를 99.99% 정확도로 식별했으며, f1-score는 92%로 나타났다.
QR Code는 사각형 모양의 흑백 격자무늬에 데이터를 넣은 매트릭스 형식의 2차원 코드로 최근 다양한 분야에서 활용되고 있다. 특히, COVID-19 확산방지를 위해 누구나 간편하게 사용할 수 있는 QR Code를 활용하여 이동경로를 파악함으로써, 사용량이 급증하게 되었다. 이렇게 QR Code의 사용이 보편화됨에 따라 이를 악용한 큐싱(Qshing) 공격에 대한 피해가 증가하고 있다. 따라서 본 논문에서는 큐싱(Qshing) 공격 탐지 시스템을 구현하여 QR Code 스캔 시 유해 사이트로의 이동 및 악성코드 설치를 탐지하여 개인정보유출을 미연에 방지할 수 있는 기술을 제안하였다.
해커들은 웹 사이트를 해킹 또는 경유 사이트를 운영하는 등 다양한 방법으로 목적을 달성하기 위한 해킹을 시도한다. 악성코드를 웹 사이트에 업로드하여 경유 사이트를 만드는 경우 해당 사이트에 접속하는 사용자는 좀비 PC가 되어 아이디와 패스워드 및 개인 정보가 대량 유출되고 해킹된 개인정보들은 다른 해킹 방법에 사용되고 있다. 기존의 탐지기법은 Snort rule을 사용하여 패턴을 IDS/IPS 장비에 입력하여 네트워크에서 패턴이 일치되면 탐지하는 기법으로 동작하고 있다. 하지만 입력된 패턴을 벗어난 공격을 하였을 경우 IDS/IPS 장비에서는 탐지하지 못하고 정상적인 행위로 간주하여 사용자 PC를 감염시킨다. 공격자는 패턴 탐지 방법의 취약점을 찾아 ShellCode를 진화시킨다. 진화된 ShellCode 공격에 대응하여 악의적인 공격을 탐지 및 대응할 수 있는 방법의 제시가 필요한 실정이다. 본 논문은 정보량 측정을 통한 ShellCode를 탐지하는 방법에 관한 연구이며, 기존의 보안 장비를 우회하여 사용자PC에 공격 시도를 탐지하는 방법을 제시한다.
Park, Hweerang;Cho, Sang-Il;Park, Jungkyu;Cho, Youngho
한국컴퓨터정보학회논문지
/
제24권5호
/
pp.27-33
/
2019
One of serious security threats is a botnet-based attack. A botnet in general consists of numerous bots, which are computing devices with networking function, such as personal computers, smartphones, or tiny IoT sensor devices compromised by malicious codes or attackers. Such botnets can launch various serious cyber-attacks like DDoS attacks, propagating mal-wares, and spreading spam e-mails over the network. To establish a botnet, attackers usually inject malicious URLs into web source codes stealthily by using data hiding methods like Javascript obfuscation techniques to avoid being discovered by traditional security systems such as Firewall, IPS(Intrusion Prevention System) or IDS(Intrusion Detection System). Meanwhile, it is non-trivial work in practice for software developers to manually find such malicious URLs which are hidden in numerous web source codes stored in web servers. In this paper, we propose a security defense system to discover such suspicious, malicious URLs hidden in web source codes, and present experiment results that show its discovery performance. In particular, based on our experiment results, our proposed system discovered 100% of URLs hidden by Javascript encoding obfuscation within sample web source files.
기존 악성코드 탐지는 다형성 또는 난독화 기법이 적용된 변종 악성코드 탐지에 취약하다. 기계학습 알고리즘은 악성코드에 내재된 패턴을 학습시켜 유사 행위 탐지가 가능해 기존 탐지 방법을 대체할 수 있다. 시간에 따라 변화하는 악성코드 패턴을 학습시키기 위해 지속적으로 데이터를 수집해야한다. 그러나 대용량 악성코드 파일의 저장 및 처리 과정은 높은 공간과 시간 복잡도가 수반된다. 이 논문에서는 공간 복잡도를 완화하고 처리 시간을 가속화하기 위해 HDFS 기반 분산 처리 시스템을 설계한다. 분산 처리 시스템을 이용해 2-gram 특징과 필터링 기준에 따른 API 특징 2개, APICFG 특징을 추출하고 앙상블 학습 모델의 일반화 성능을 비교했다. 실험 결과로 특징 추출의 시간 복잡도는 컴퓨터 한 대의 처리 시간과 비교했을 때 약 3.75배 속도가 개선되었으며, 공간 복잡도는 약 5배의 효율성을 보였다. 특징 별 분류 성능을 비교했을 때 2-gram 특징이 가장 우수했으나 훈련 데이터 차원이 높아 학습 시간이 오래 소요되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.