• 제목/요약/키워드: malic enzyme

검색결과 94건 처리시간 0.029초

Malo-Alcohol 발효(醱酵)에 관여(關與)하는 분열효모균(分裂酵母菌)이 생성(生成)하는 Malic Enzyme의 효소학적(酵素學的) 성질(性質) (Some Properties of Malic Enzyme From Malo-Alcoholic Yeast)

  • 정기택;유대식;김재근
    • 한국식품과학회지
    • /
    • 제15권4호
    • /
    • pp.404-408
    • /
    • 1983
  • Malo-alcohol 발효(醱酵)에 관여하는 분열효모균(分裂酵母菌), Schizos-accharomyces japonicus var. japonicus St-3가 생성(生成)하는 malic enzyme(EC 1.1.1 40)의 몇가지 성질(性質)을 조사하였다. Malic enzyme의 생성(生成)은 배양(培養) 24시간(時間)에 최대(最大)에 이르렀고 효소반응(酵素反應)의 최적(最適) pH는 10.0, 온도(溫度)는 $25^{\circ}C$였다. 본(本) 효소(酵素)는 pH $7.0{\sim}8.4$에서 안정(安定)하였으며 $60^{\circ}C$, 10분간(分間) 열처리(熱처理)로 50% 실활(失活)되었다. $Mn^{2+}$ 첨가(添加)는 효소활성(酵素活性)을 촉진(促進)시켰으며 유기산(有機酸), 아마노산(酸) 및 ethanol의 첨가(添加)는 효소활성(酵素活性)에 아무런 영향(影響)이 없었다.

  • PDF

Malo-Alcohol 발효(醱酵)에 있어서 사과산의 대사경로(代謝経路) (Metabolic Pathway of L-Malate in Malo-Alcoholic Fermentation)

  • 정기택;유대식;송형익;김재근;김찬조
    • 한국식품과학회지
    • /
    • 제16권1호
    • /
    • pp.90-94
    • /
    • 1984
  • Malo-alcohol 발효효모(醱酵酵母) Schizosaccharomyces japonicus var. japonius St-3에 의한 사과산의 대사경로(代謝經路)를 검토한 결과는 다음과 같다. Schiz, japonicus var. japonicus St-3의 조효소(粗酵素)의 활성(活性)을 측정(測定)한 바, malic enzyme(EC1. 1. 1. 40)의 효소활성(活性)이 malate dehydrogenase(EC1. 1. 1. 37)보다 약 4배 높았으며 양효소(兩酵素)의 기질(基質)인 L-malate에 대한 Km치(値)는 malic enzymed l 3. 125mM, malated dehydrogenase는 4. 761mM로써 기질에 대한 친화성(親和性)에 있어서 malic enzyme 쪽이 훨씬 컸다. malo-alcohol발효(醱酵)과정중 사과산이 소시(消矢)되어 pyruvate가 생성(生成)됨을 확인(確認)할 수있었으며 $Mn^{2+}$에 의해 malic enzyme의 활성(活性)이 촉진(促進)되었다. 이상의 결과(結果)로 미루어 본(本) 공시균(供試菌)에 의한 사과산 대사(代謝)의 주경로(主經路)는 $malate{\rightarrow}pyruvate{\rightarrow}acetaldehyde{\rightarrow}ethanol$의 경로(經路)를 거치는 것으로 추정(推定)할 수 있었다.

  • PDF

Metabolic Flux Distribution in a Metabolically Engineered Escherichia coli Strain Producing Succinic Acid

  • Hong, Soon-Ho;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.496-501
    • /
    • 2000
  • Escherichia cole NZN111, which is known as a pfl ldhA double mutant strin, was metabolically engineered to produce succinic acid by overexpressing malic enzyme into the E. coli controlled by a trc promoter. Fermentation studies were carried out in a LB medium by first growing cells aerobically to an $OD_{600}$ of 5. At this point, 0.01 mM IPTG was added to induce the overexpression of malic enzyme and the agitation speed was gradually lowered. When the culture $OD_{600}$ reached 11, a complete anaerobic condition was achieved by flushing with a $CO_3-H_2$ gas mixture. When NZN111(pTrcML) was cultured at $37^{\circ}C$, the final succinic acid concentration of 2.8 g/l could be obtained after 30 h of anaerobic cultivation. The fermentation results were analyzed by the calculation of metabolic fluxes. Metaolic flux analysis showed that about 85% of phosphoenolpyruvate (PEP) was converted to pyruvate, and further converted to malic acid by malic enzyme.

  • PDF

Enhanced Production of Succinic Acid by Metabolically Engineered Escherichia coli with Amplified Activities of Malic Enzyme and Fumarase

  • Hong, Soon-Ho;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권4호
    • /
    • pp.252-255
    • /
    • 2004
  • A pfl ldhA double mutant Escherichia coli strain NZN 111 was used to produce succinic acid by overexpressing the E. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, the fumB gene encoding the anaerobic fumarase of E. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducible trc promoter. From the batch culture of recombinant E. coli NZN 111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.

Activities of Enzymes Involved in Fatty Acid Metabolism in the Colon Epithelium of Piglets Fed with Different Fiber Contents Diets

  • Zhu, Y.H.;Lundh, T.;Wang, J.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권10호
    • /
    • pp.1524-1528
    • /
    • 2003
  • The present study was conducted to evaluate the influence of dietary fiber on the activities of malic enzyme and citrate lyase involved in fatty acid metabolism in the colon epithelium of pigs. Thirty-six weaned 5 weeks old crossbred (Yorkshire${\times}$Swedish Landrace) piglets originating from twelve litters were randomly assigned to either a low fiber diet containing 10% non-starch polysaccharides (NSP), a control diet containing 14.7% NSP or a high fiber diet containing 20% NSP. The activity of malic enzyme in the colonic epithelium of pigs significantly (p<0.05) increased with age during the suckling-weaning transition. There was a tendency (p<0.10) of decreased malic enzyme activity in the colonic epithelium of pigs fed on the high fiber diet. At week 6, a lowered (p<0.01) activity of malic enzyme in pigs fed on the low fiber diet compared with that in pigs fed on the high fiber and the control diets. Nevertheless, there were no significant differences in the activity of citrate lyase observed either between pigs with different ages or between pigs fed with various diets. The current data suggest that piglets during the suckling-weaning transition have a limited capacity to synthesize fatty acids from carbohydrate derivatives in the coloncytes. In addition, lipogenesis in coloncytes was enhanced with age during the suckling-weaning transition. A tendency (p<0.10) to an increased capacity to utilize acetyl-CoA in coloncytes of pigs has been observed for the high fiber diet. Moreover, the present work indicated that dietary fiber resulted in a lowered rate of lipogenesis and a reduced activity of malic enzyme.

Potentiometric Determination of L-Malate Using Ion-Selective Electrode in Flow Injection Analysis Syste

  • Kwun, In-Sook;Lee, Hye-Sung;Kim, Meera
    • Preventive Nutrition and Food Science
    • /
    • 제4권1호
    • /
    • pp.79-83
    • /
    • 1999
  • A potentiometric biosensor employing a CO3-2 ion-selective electrode(ISE) and malic enzyme immobilization in al flow injection analysis (FIA) system was constructed. Analytical parameters were optimized for L-malate determination . The CO3-2 -ISE-FIA system was composed of a pump, an injector, a malic enzyme (EC1.1.1.40) reactor, a CO3-2 ion-selective electrode, a pH/mV meter and a recorder. Cofactor NADP was also injected with substrate for theenzyme reaction into the system. Optimized analytical parameters for L-malate determination in the CO3-2 ISE-FIA system were as follows ; flow rate, 14.5ml/hr ; sample injection volume, 100ul; enzyme loading in the reactor, 20 units ; length of the enzyme reactor , 7 cm ; tubing length form the enzyme reactor to the detector as a geometric factor in FIA, 15 cm . The response time for measuring the entire L-malate concentration range (10-2 ~10-5 mol/L ; 4 injections )was <15minutes . In this CO3-2 -ISE-FIA system, the potential differences due to th eformation of CO3-2 by the reaction of malic enzyme on L-malate were correlated to L-malate concentration in the range of 10-2 ~10-5mol/L ; the detection limit was 10-5 mol/L. This potentionmetric CO3-2 ISE--FIA system was found to be useful for L-malate measurement.

  • PDF

Carbonic Maceration처리에 의한 Campbell Early 발효액의 감산 효과: 사과산 대사 관련 효소활성의 영향 (Deacidification Effect of Campbell Early Must via Carbonic Maceration : Effect of Enzyme Activity Associated with Malic-Acid Metabolism)

  • 장은하;정석태;정성민;노정호;박교선;박서준;최종욱
    • 한국식품저장유통학회지
    • /
    • 제18권5호
    • /
    • pp.795-802
    • /
    • 2011
  • Carbonic maceration처리 포도주에 있어 유기산 특히 사과산 함량을 감소시키는 주요 원인을 찾고자 포도를 2주 동안 온도별 carbonic maceration 처리하며 시기별로 산함량 및 사과산대사 관련 효소활성을 측정하였다. 온도별 carbonic maceration 처리 포도의 pH는 CM-$25^{\circ}C$와 CM-$35^{\circ}C$에서 처리 시간이 경과할수록 가장 높았으며, 총산은 초기에는 CM-$35^{\circ}C$에서 가장 낮은 함량을 나타내었지만 처리 6일 이후 서서히 증가하였고, CM-$25^{\circ}C$는 처리 완료일 까지 꾸준히 감소하는 것으로 나타났다. CM-$45^{\circ}C$는 초기와 비슷한 함량을 나타내어 다른 처리보다 높은 총산 함량을 나타내었다. 유기산 함량에 있어 사과산 함량은 CM-$35^{\circ}C$에서 가장 많이 감소하였고, 젖산 함량은 CM-$35^{\circ}C$에서 가장 높게 나타났다. 사과산 대사과련 효소활성을 살펴본 결과, malic enzyme과 malic dehydrogenase는 CM-$25^{\circ}C$와 CM-$35^{\circ}C$에서 가장 높은 효소활성을 나타내었지만 CM-$45^{\circ}C$에서는 초기부터 효소활성이 나타나지 않았다. oxalacetate decarboxylase 활성도 malic dehydrogenase 활성과 비슷한 경향을 나타내었다. pyruvate decarboxylase 활성은 다른 효소활성에 비해 활성이 낮았지만, CM-$45^{\circ}C$에서도 활성을 나타내었다. 반면 L-lactic dehydrogenase 활성은 어떤 처리구에서도 나타나지 않았다. 이와 같은 결과로부터 온도와 효소활성과의 관계에 있어 온도가 $40^{\circ}C$ 이상에서는 사과산 대사관련 효소가 활성을 나타내지 않는 것을 알 수 있었고, carbonic maceration 처리에서 사과산 감소가 효소의 작용에 크게 영향 받는 것을 확인할 수 있었지만, 젖산 생성에 대해서는 효소작용 외에 사과산 대사 미생물과 같은 다른 요인들에 대해 좀 더 깊이 있는 연구가 필요하다.

5-Aminolevulinic Acid Biosynthesis in Escherichia coli Coexpressing NADP-dependent Malic Enzyme and 5-Aminolevulinate Synthase

  • Shin, Jeong-Ah;Kwon, Yeong-Deok;Kwon, Oh-Hee;Lee, Heung-Shick;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권9호
    • /
    • pp.1579-1584
    • /
    • 2007
  • 5-Aminolevulinate (ALA) synthase (E.C. 2.3.1.37), which mediates the pyridoxal phosphate-dependent condensation of glycine and succinyl-CoA, encoded by the Rhodobacter sphaeroides hemA gene, enables Escherichia coli strains to produce ALA at a low level. To study the effect of the enhanced C4 metabolism of E. coli on ALA biosynthesis, NADP-dependent malic enzyme (maeB, E.C. 1.1.1.40) was coexpressed with ALA synthase in E. coli. The concentration of ALA was two times greater in cells coexpressing maeB and hemA than in cells expressing hemA alone under anaerobic conditions with medium containing glucose and glycine. Enhanced ALA synthase activity via coupled expression of hemA and maeB may lead to metabolic engineering of E. coli capable of large-scale ALA production.

The Occurrence of Kranz Type Species Among the Noxious Weeds on Cultivated Land of Taiwan and their Biochemical Subdivision

  • Lin, Chin Ho;Yin, Shan Tai
    • 한국잡초학회지
    • /
    • 제8권2호
    • /
    • pp.133-140
    • /
    • 1988
  • One hundred and one noxious weeds on cultivated land of Taiwan were investigated for the occurrence of "Kranz" leaf anatomy and activities of PEP carboxylase and $C_4$ acid decarboxylating enzymes : NADP-malic enzyme, NAD-malic enzyme, PEP carboxykinase. Based on the leaf anatomy and a/b chlorophyll ratio, twenty-seven species exhibit "Kranz" type leaf anatomy, and seventy-four species were found without it. Among the species investigated, Digitaria radicosa (Presl) Miq., Leptochloa chinensis (L.) Nees, and Sporobolus fertilis (Steud.) W. D. Clayton in the Gramineae were first recorded as $C_4$ plants. Twenty-sven species of "Kranz" type leaf anatomy, include those of monocotyledon ; sixteen species in Gramineae, six species in Cyperaceae. Those of dicotyledon ; two species each in Euphorbiaceae and Amaranthaceae and one species in Portulacaceae. The subtype of fourteen previously uninvestigated species among twenty-seven species were further determined. The properties of the three decarboxylating enzyme from representative species were also characterized.

  • PDF

Hydrogenosomal activity of Trichomonas varinalis cultivated under different iron conditions

  • Kim, Yong-Seok;Song, Hyun-Ouk;Choi, Ik-Hwa;Park, Soon-Jung;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • 제44권4호
    • /
    • pp.373-378
    • /
    • 2006
  • To evaluate whether iron concentration in TYM medium influence on hydrogenosomal enzyme gene expression and hydrogenosomal membrane potential of Trichomonas vaginalis, trophozoites were cultivated in iron-depleted, normal and iron-supplemented TYM media. The mRNA of hydrogenosomal enzymes, such as pyruvate ferredoxin oxidoreductase (PFOR), hydrogenase, ferredoxin and malic enzyme, was increased with iron concentrations in T. vaginalis culture media, measured by RT-PCR. Hydrogenosomal membrane potentials measured with $DiOC_6$ also showed similar tendency, e.g. T. vaginalis cultivated in iron-depleted and iron-supplemented media for 3 days showed a significantly reduced and enhanced hydrogenosomal membrane potential compared with that of normal TYM media, respectively. Therefore, it is suggested that iron may regulate hydrogenosomal activity through hydrogenosomal enzyme expression and hydrogenosomal membrane potential.