Browse > Article

5-Aminolevulinic Acid Biosynthesis in Escherichia coli Coexpressing NADP-dependent Malic Enzyme and 5-Aminolevulinate Synthase  

Shin, Jeong-Ah (Department of Biotechnology, The Catholic University of Korea)
Kwon, Yeong-Deok (Department of Biotechnology, The Catholic University of Korea)
Kwon, Oh-Hee (Department of Biotechnology, The Catholic University of Korea)
Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1579-1584 More about this Journal
Abstract
5-Aminolevulinate (ALA) synthase (E.C. 2.3.1.37), which mediates the pyridoxal phosphate-dependent condensation of glycine and succinyl-CoA, encoded by the Rhodobacter sphaeroides hemA gene, enables Escherichia coli strains to produce ALA at a low level. To study the effect of the enhanced C4 metabolism of E. coli on ALA biosynthesis, NADP-dependent malic enzyme (maeB, E.C. 1.1.1.40) was coexpressed with ALA synthase in E. coli. The concentration of ALA was two times greater in cells coexpressing maeB and hemA than in cells expressing hemA alone under anaerobic conditions with medium containing glucose and glycine. Enhanced ALA synthase activity via coupled expression of hemA and maeB may lead to metabolic engineering of E. coli capable of large-scale ALA production.
Keywords
ALA synthase; NADP-dependent malic enzyme; coexpression; 5-aminolevulinic acid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, C., B. S. Hong, H. C. Sung, H. S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554   DOI   ScienceOn
2 Fales, L., L. Nogaj, and J. Zeilstra-Ryalls. 2002. Analysis of the upstream sequences of the Rhodobacter sphaeroides 2.4.1 hemA gene: In vivo evidence for the presence of two promoters that are both regulated by fnrL. Photosynth. Res. 74: 143-151   DOI   ScienceOn
3 Kwon, Y. D., O. H. Kwon, H. S. Lee, and P. Kim. 2007. The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J. Appl. Microbiol. doi. 10. 1111/J. 1365-2672. 2007. 03485X (in press)
4 Kwon, Y. D., S. Y. Lee, and P. Kim. 2006. Influence of gluconeogenic phosphoenolpyruvate carboxylkinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J. Microbiol. Biotechnol. 16: 1448-1452   과학기술학회마을
5 Miyachi, N., T. Tanaka, S. Nishikawa, H. Takeya, and Y. Hotta. 1998. Preparation and chemical properties of 5-aminolevulinic acid and its derivatives. Porphyrins 7: 342-347
6 Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology. Wiley-Liss Inc., New York
7 van der Werf, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566
8 Sasikala, c., C. V. Ramana, and P. R. Rao. 1994. 5-Aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459   DOI   ScienceOn
9 Vadali, R. V., G. N. Bennett, and K. Y. San. 2004. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab. Eng. 6: 133-139   DOI   ScienceOn
10 Kang, D. K., S. S. Kim, W. J. Chi, S. K. Hong, H. K. Kim, and H. U. Kim. 2004. Cloning and expression of the Rhodobacter capsulatus hemA gene in E. coli for the Production of 5-aminolevulinic acid. J. Microbiol. Biotechnol. 4: 1327-1332
11 Sambrook, J. and D. W. Russell. 2000. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, NY
12 Smith, A. J. and L. J. Roger. 1988. Tetrapyrrole biosynthesis - the C5 pathway, pp. 69-96. In L. J. Rogers and J. R. Gallon (eds.), Biochemistry of the Algae and Cyanobacteria. Clarendon Press, Oxford
13 Thakker, C., B. Suresh, and D. Ranade. 2006. Formation of succinic acid by Klebsiella pneumoniae MCM B-325 under aerobic and anaerobic conditions. J. Microbiol. Biotechnol. 16: 870-879   과학기술학회마을
14 Mauzerall, D. and S. Granick. 1956. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-446
15 Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23-29   DOI   ScienceOn
16 Jeon, S. J., I. H. Shin, B. I. Sang, and D. H. Park. 2005. Electrochemical regeneration of FAD by catalytic electrode without electron mediator and biochemical reducing power. J. Microbiol. Biotechnol. 15: 281-286   과학기술학회마을
17 Neidle, E. L. and S. Kaplan. 1993. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J. Bacteriol. 175: 2304-2313   DOI
18 Berger, A. P., H. Steiner, A. Stenzl, T. Akkad, G. Bartsch, and L. Holtl. 2003. Photodynamic therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent superficial bladder cancer: A single-center study. Urology 61: 338-341   DOI   ScienceOn
19 Ranson-Olson, B., D. F. Jones, T. J. Donohue, and J. H. Zeilstra-Ryalls. 2006. In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression. J. Bacteriol. 188: 3208-3218   DOI   ScienceOn
20 Gosset, G., Z. Zhang, S. Nayyar, W. A. Cuevas, and M. H. Saier Jr. 2004. Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J. Bacteriol. 186: 3516-3524   DOI   ScienceOn
21 Verderber, E., L. J. Lucast, J. A. Van Dehy, P. Cozart, J. B. Etter, and E. A. Best. 1997. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. J. Bacteriol. 179: 4583-4590   DOI
22 Kuramochi, H., M. Konnai, T. Tanaka, and Y. Hotta. 1997. Method for improving plant salt tolerance. US Patent 5,661,111
23 Beale, S. I. and D. J. Weinstein. 1990. Tetrapyrrole Metabolism in Photosynthetic Organisms. McGrawHill, New York
24 Vemuri, G. N., M. A. Eiteman, and E. Altman. 2002. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J. Ind. Microbiol. Biotechnol. 28: 325-332   DOI   ScienceOn
25 Hong, S. H. and S. Y. Lee. 2002. Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 58: 286-290   DOI   ScienceOn
26 Szeimies, R. M. and M. Landthaler. 2002. Photodynamic therapy and fluorescence diagnosis of skin cancers. Recent Results Cancer Res. 160: 240-245
27 Jordan, P. M. 1990. Biosynthesis of 5-aminolevulinic acid and its transformation into coproporphyrinogen in animals and bacteria, pp. 55-121. In H. A. Dailey (ed.), Biosynthesis of Heme and Chlorophylls. McGraw-Hill, New York
28 Lee, D. H., W. J. Jun, J. W. Yoon, H. Y. Cho, and B. S. Hong. 2004. Process strategies to enhance the production of 5- aminolevulinic acid with recombinant E. coli. J. Microbiol. Biotechnol. 4: 1310-1317
29 Kim, P., M. Laivenieks, C. Vieille, and J. G. Zeikus. 2004. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl. Environ. Microbiol. 70: 1238-1241   DOI   ScienceOn