• Title/Summary/Keyword: main-effect QTLs

Search Result 9, Processing Time 0.029 seconds

Detection of Main-effect QTLs, Epistatic QTLs and QE Interactions for Grain Appearance of Brown Rice(Oryza sativa L.)

  • Qin, Yang;Kim, Suk-Man;Sohn, Jae-Keun
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • The objective of this study is to identify main-effect QTLs, epistatic QTLs, and the interactions between QTL and the environment associated with grain appearances of brown rice. A genetic linkage map was created with 172 DNA markers spanning 12 rice chromosomes based on 120 DH lines, which derived from a cross between 'Samgang'(Tongil) and 'Nagdong'(Japonica). One thousandgrain weight, length, width, length-to-width ratio, and thickness were evaluated regarding the DH population. Twenty independent QTLs and fourteen epistatic QTLs were identified in using CIM by two programs, known as WinQTLcart2.5 and QTLMAPPER. The QTLs of qgw9.1 in an interval of RM434-RM242 on chromosome 9 and qgw11.1 at a peak marker of RM287 on chromosome 11 for one thousand-grain weight, qgwi2.2 for grain width at a peak marker of RM450, qlw2.1 for length-to-width ratio flanked by RM492 and RM324, and qgt2.1 for thickness flanked by 2009 and RM492 on chromosome 2 were detected over two years, which can be considered as stable QTLs. The epistatic effect might be an important component for genetic basis of one thousand-grain weight and width. The main-effect QTLs of grain width and length to width ratio were easily influenced by environments.

  • PDF

QTL Analysis of Protein Content in Double-haploid Lines of Rice

  • Qin, Yang;Kim, Suk-Man;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • The objective of this study was to characterize the main-effect QTLs, epistatic QTLs and QTL-by-environment interactions (QE), which are involved in the control of protein content. A population of 120 doubled haploid (DH) lines derived from a cross between 'Samgang' and 'Nagdong', was planted and determined for protein content over three years. Based on the population and a genetic linkage map of 172 markers, QTL analysis was conducted by WinQTLcart 2.5 and QTLMAPPER. Three main-effect QTLs affecting protein content of brown rice were detected from 2004 to 2006 on chromosomes 1 and 11. The qPC11.2 was repeatedly detected across two years. Seven pairs of epistatic loci were identified on eight chromosomes for protein content and collectively explained 39.15% of phenotype variation. These results suggest that epistatic effects might be an even more important component of the genetic basis for protein content and that the segregation of the DH lines for protein content could be largely explained by a few main-effect QTLs and many epistatic loci.

Quantitative trait loci controlling the amino acid content in rice (Oryza sativa L.)

  • Yoo, Soo-Cheul
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.349-355
    • /
    • 2017
  • The amino acid composition of rice is a major concern of rice breeders because amino acids are among the most important nutrient components in rice. In this study, a genetic map was constructed with a population of 134 recombinant inbred lines (RILs) from a cross between Dasanbyeo (Tongil-type indica) and TR22183 (temperate japonica), as a means to detect the main and epistatic effect quantitative trait loci (QTLs) for the amino acid content (AAC). Using a linkage map which covered a total of 1458 cM based on 239 molecular marker loci, a total of six main-effect QTLs (M-QTLs) was identified for the content of six amino acids that were mapped onto chromosome 3. For all the M-QTLs, the TR22183 allele increased the trait values. The QTL cluster (flanked by id3015453 and id3016090) on chromosome 3 was associated with the content of five amino acids. The phenotypic variation, explained by the individual QTLs located in this cluster, ranged from 10.2 to 12.4%. In addition, 26 epistatic QTLs (Ep-QTLs) were detected and the 25 loci involved in this interaction were distributed on all nine chromosomes. Both the M-QTLs and Ep-QTLs detected in this study will be useful in breeding programs which target the development of rice with improved amino acid composition.

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun;Yang, Hyun-Jung;Jung, Ki-Hong;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.149-160
    • /
    • 2014
  • Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.

Locating QTLs controlling overwintering seedling rate in perennial glutinous rice 89-1 (Oryza sativa L.)

  • Deng, Xiaoshu;Gan, Lu;Liu, Yan;Luo, Ancai;Jin, Liang;Chen, Jiao;Tang, Ruyu;Lei, Lixia;Tang, Jianghong;Zhang, Jiani;Zhao, Zhengwu
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1351-1361
    • /
    • 2018
  • A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 $F_{12}$ recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))-RM208 (35,520,147 bp), RM218 (8,375,236 bp)-RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)-RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs-qOSR2, qOSR3, and qOSR8-were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.

Investigation of Splicing Quantitative Trait Loci in Arabidopsis thaliana

  • Yoo, Wonseok;Kyung, Sungkyu;Han, Seonggyun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.211-215
    • /
    • 2016
  • The alteration of alternative splicing patterns has an effect on the quantification of functional proteins, leading to phenotype variation. The splicing quantitative trait locus (sQTL) is one of the main genetic elements affecting splicing patterns. Here, we report the results of genome-wide sQTLs across 141 strains of Arabidopsis thaliana with publicly available next generation sequencing datasets. As a result, we found 1,694 candidate sQTLs in Arabidopsis thaliana at a false discovery rate of 0.01. Furthermore, among the candidate sQTLs, we found 25 sQTLs that overlapped with the list of previously examined trait-associated single nucleotide polymorphisms (SNPs). In summary, this sQTL analysis provides new insight into genetic elements affecting alternative splicing patterns in Arabidopsis thaliana and the mechanism of previously reported trait-associated SNPs.

Quantitative Trait Loci Associated with Functional Stay-Green SNU-SG1 in Rice

  • Yoo, Soo-Cheul;Cho, Sung-Hwan;Zhang, Haitao;Paik, Hyo-Chung;Lee, Chung-Hee;Li, Jinjie;Yoo, Jeong-Hoon;Lee, Byun-Woo;Koh, Hee-Jong;Seo, Hak Soo;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.83-94
    • /
    • 2007
  • During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with $F_2$ and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1.

Comparison of Molecular Linkage Maps and QTLs for Morphological Traits in Two Reciprocal Backcross Populations of Rice

  • Qiao, Yongli;Jiang, Wenzhu;Rahman, Md Lutfor;Chu, Sang-Ho;Piao, Rihua;Han, Longzhi;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.417-427
    • /
    • 2008
  • Comparison of maps and QTLs between populations may provide us with a better understanding of molecular maps and the inheritance of traits. We developed and used two reciprocal $BC_1F_1$ populations, IP/DS//IP and IP/DS//DS, for QTL analysis. DS (Dasanbyeo) is a Korean tongil-type cultivar (derived from an indica x japonica cross and similar to indica in its genetic make-up) and IP (Ilpumbyeo) is a Korean japonica cultivar. We constructed two molecular linkage maps corresponding to each backcross population using 196 markers for each map. The length of each chromosome was longer in the IP/DS//IP population than in the IP/DS//DS population, indicating that more recombinants were produced in the IP/DS//IP population. Distorted segregation was observed for 44 and 19 marker loci for the IP/DS//IP and IP/DS//DS populations, respectively; these were mostly skewed in favor of the indica alleles. A total of 36 main effect QTLs (M-QTLs) and 15 digenic epistatic interactions (E-QTLs) were detected for the seven traits investigated. The phenotypic variation explained (PVE) by M-QTLs ranged from 3.4% to 88.2%. Total PVE of the M-QTLs for each trait was significantly higher than that of the E-QTLs. The total number of M-QTLs identified in the IP/DS//IP population was higher than in the IP/DS//DS population. However, the total PVE by the M-QTLs and E-QTLs together for each trait was similar in the two populations, suggesting that the two $BC_1F_1$ populations are equally useful for QTL analysis. Maps and QTLs in the two populations were compared. Eleven new QTLs were identified for SN, SF, GL, and GW in this study, and they will be valuable in marker-assisted selection, particularly for improving grain traits in tongil-type varieties.

Identification and Functional Analysis of a Major QTL and Related Genes for Tiller Angle in Rice Using QTL Analysis

  • Dan-Dan Zhao;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.280-280
    • /
    • 2022
  • Tiller angle, defined as the angle between the main stem and its side tillers, is one of the main target traits selected inbreeding to achieve the ideal plant type and increase rice yield. Therefore, the discovery and identification of tiller angle-related genes can provide architecture and yield. In the present work, using QTL analysis hence a total of 8 quantitative trait loci (QTLs) were detected based on the phenotype data of tiller angle and tiller crown width in two years. Among them, four QTLs (qTA9, qCW9, qTA9-1, qCW9-1) were overlapped at marker interval RM6235-RM24288 on chromosome 9 with a large effect value regarded as stable major QTL. Twenty tiller angle-related genes were selected from the target region and the relative gene expression levels were checked in five compact type lines, five spreading type lines, and their parental lines. Finally, OsSA URq9 which belongs auxin-responsive SMALL AUXIN UP RNA (SAUR) protein family was selected as a target gene. Overall, this work will help broaden our understanding of the genetic control of tiller angle and tiller crown width, and this study provides both a good theoretical basis and a new genetic resource for the breeding of ideal-type rice.

  • PDF