• 제목/요약/키워드: main blade

검색결과 265건 처리시간 0.025초

풍력발전의 전력공급 안정화를 위한 ESS 보조제어 기법과 경제적 용량 산정 연구 (A Study of Economic ESS Utilization Based on Supplement Control Plan for Stable Wind Energy Extraction)

  • 정승민
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.22-28
    • /
    • 2018
  • In case of developing a combined system by a number of distributed resources with storage device, a number of application suggests a huge capacity can derive operational flexibility both power supply issues or when unexpected situation imposed. However, it is important to determine a resonable energy capacity because the device have many controversial cost issues in current power system industry. An ESS application which focusing essentially required points can induce appropriate storage capacity that required in economic operation. In this paper, a curtailment supporting algorithm based on storage device is introduced, and applied in the capacity calculation method. The main algorithm pursues handling minor exceeding quantities which can cause mechanical load at blade; This paper tries to include it for configuring hybrid algorithm with pitch control. Several fluctuating conditions are utilized in simulation to reflect critical situation. The analyzing process focuses on the control feasibility with applied capacity and control method.

유동 저항에 따른 원심홴의 선정 (Selection of Centrifugal Fan for Flows with Down-Stream Resistance)

  • 김재원;장동희;안은영
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.44-48
    • /
    • 2006
  • Comprehensive experimental works are carried out for the optimal design of a centrifugal blower adopted in an indoor unit of an air-conditioner. The models for consideration are typical multi-blade turbo blower and limit loaded one, respectively. The main interest lies on the fluid dynamics performance when the blower Is installed in the practical system. The methodologies are an experimental estimations with a wind tunnel for blower performance and PIV measurement for the detail flow information. A centrifugal blower with limit loaded fan shows pronounced performances in terms of the flow rate and static pressure rise and the reason is explained by the precise measurement of the flows between blades using PIV. Consequently, it is found that the blower is proper for the flows with a resistance in down stream such as a heat exchanger.

맥동주파수의 변화에 따른 충돌제트의 열전달 특성 (Heat Transfer Characteristics Of Impinging jet with Pulsating Frequency)

  • 김용일;박복춘;백병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.278-284
    • /
    • 2000
  • The method of Impinging jet was applied lots of part in industrial field as a cooling of as gas turbine blade, a annealing of metal and plastic sheets, drying of textile, veneer paper, X-ray medical devices, laser weapons and electronic components. This study's main factor is reciprocating Jet impingement perpendicular to the heated Surface. We researched the effect of heat transfer and enhancement with pulsating air jet. The pulsating air jet has an improvement in pulsating Frequencies((f= 0.5, 1, 1.5, 3Hz) and nozzle-to-plate distances($l/d=\;2{\sim}4,\;6{\sim}8,\;4{\sim}6,\;8{\sim}10$).

  • PDF

대형 와 모사를 사용한 혼합 탱크 내의 농도장과 유동장의 동시 해석 (Simultaneous analysis of concentration and flow fields in a stirred tank using large eddy simulation)

  • 윤현식;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1972-1979
    • /
    • 2003
  • Transport of a scalar quantity, such as chemical concentration or temperature, is important in many engineering applications and environmental flows. Here we report on results obtained from the large eddy simulations of flow and concentration fields inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius (Yoon et al. $^{(1)}$). This study focused on the concentration development at different molecular diffusivities in a stirred tank operated under turbulent conditions. The main objective of the work presented here is to study the large-scale mixing structure at different molecular diffusivities in a stirred tank by using the large eddy simulation. The time sequence of concentration and flow fields shows the flow dependency of the concentration development. The presence of spatial inhomogenieties is detailed by observing the time variation of local concentration at different positions.

  • PDF

트랙트용 미드 모어의 공기 유동 특성에 관한 연구(I) (A Study on Air Flow Characteristics of Mid-mower for Tractor(I))

  • 김해지;김삼희
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.27-35
    • /
    • 2015
  • Recently, the work machine is widely used in the agricultural machine and to use the power source of the tractor, the mower had been widely used as a working machine for mowing. The mower is classified as a front mower, mid-mower, and rear mower according to the mounting position of the lower frame on tractor. The main structure of mower is composed of deck, gearbox, and blade. This study concerns a study on air flow characteristics of Mid-mower for tractor. An air flow characteristics of the Mid-mower deck was evaluated by the velocity vector, flow path, and total air flow according to the number of revolutions. As the analysis results, The inner path of designed deck had no effect on air flow.

엔드밀 공정에서 최대 절삭력 제어 (Peak force control in the milling process)

  • 김홍겸;이건복
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.188-191
    • /
    • 2001
  • Generally, main factors of tool damage are cutting speed, feed rate and depth of cut. The increase of those factors can cause tool breakage or worsen product quality such as machining accuracy deterioration. Those three factors are concerned with cutting force. Cutting force reaches at its maximum value when cutter blade cuts away the object directly, and it is the time when tool damages are at high probability. In this study, we detect the maximum cutting force affecting tool damage and control the maximum cutting force based on the measured peak force.

  • PDF

진공청소기 원심 홴의 소음원 분석 및 공력 소음 예측 (Investigation of the noise sources for the centrifugal fan and aeroacoustic noise prediction)

  • 정예은;배영민;문영준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.645-645
    • /
    • 2009
  • In many practical applications of the centrifugal fan, the impeller-diffuser interaction noise is considered as a main source of fan noise. The housing for an electric motor is also expected to play an important role on noise propagation because of its complicated configuration. This study investigates the impeller-diffuser interaction noise and its sources by computing three-dimensional, incompressible flow field of the centrifugal fan in motor housing. The effect of motor case on fan noise characteristic is then investigated using the Brinkman penalization method, while the noise source associated with impeller-diffuser interaction is mathematically modeled. It is found that the present methodology combined with mathematical description of noise source provides a fairly good agreement with the experimental results, indicating that the motor housing has significant effect on noise characteristics. Finally, aeroacoustic noise prediction for various impeller-diffuser blade count ratios is conducted for noise reduction.

  • PDF

흡음형 소음기를 사용한 세차기용 원심송풍기의 소음저감에 관한 연구 (Noise Reduction of a Blower for an Automatic Car Washer by Using Dissipative Silencers)

  • 김재영;이일재
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.726-732
    • /
    • 2011
  • Straight absorptive silencers have been designed to reduce the noise level of a centrifugal blower. Three-dimensional boundary element method is used for the design of absorptive silencers which consist of a perforated main pipe and a outer chamber filled with fibrous material. The experimental results show that the absorptive silencer reduces up to 8 dB(A) in the overall sound pressure level of the blower and up to 15 dB at the blade passing frequency. It is also found that the gap between the silencer and the impeller may substantially alter the acoustic performance of the silencers. The transmission loss predicted by the boundary element method follows overall trends of the measured insertion loss. The experiments also show that the impact of the silencers on the aerodynamic performance of the blower is minimum.

Kirchhoff Surface를 이용한 Fan 소음 해석 (Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface)

  • 박용민;이승배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.763-766
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

발전소 주 급수 펌프의 임펠러 손상과 압력맥동 현상 (Impeller Failure and Pressure Pulsation of Boiler Main Feed Water Pump for Power Plant)

  • 김연환;김계연;이우광;이현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.368-373
    • /
    • 2001
  • A major concern on high-energy centrifugal pump is the potential for interaction of two-phase flow phenomena with mechanical response of the pumping elements. The other concern is the pressure pulsations created from trailing edge of the impeller blade and flow separation and recirculation at partial load in centrifugal pumps. These interactions generating between rotor and casing cause dynamic pulsation on pump and exciting pipeline vibration. The higher severity responses, the more lead to failure of pump and system components. Finally, it cause severe axial vibration of single stage pump due to the hydraulic instability in flow condition below BEP.

  • PDF