• Title/Summary/Keyword: magnitude of errors

Search Result 182, Processing Time 0.027 seconds

An Inproved Algorithm of Eigenvalue Equation for Silica Double Layer Slab Waveguides (실리카 2층 Slab 도파로를 위한 고유방정식의 개선된 알고리즘)

  • Ji yoo-kang;Park jong-ran;Yun jung-hyun;Park soo-bong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.18-23
    • /
    • 2006
  • In this paper, we derive a novel eigenvalue equation of double silica layers on silicon only for TE mode and present the method as an example how to use it to determine the refractive indices and thicknesses with prism coupler. Our method to solve eigenvalue equation have good merit rather than [5] in that the equation is real and iteration parameters can be reduced from four to three. The average magnitude of the errors is less than $10^{-5}\~10^{-6}$ approximately

Determination of Hypocentral Parameters Using Phase Identification and Two-Point Ray Tracing (파형분석과 두 점을 잇는 파선추적을 이용한 지진요소 결정)

  • 박종찬;김우환
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.57-61
    • /
    • 2001
  • This study introduces an algorithm for determination of hypocentral parameters using phase analysis and two-point ray tracing to enhance accuracy and stability of computations. When the magnitude of earthquake is relatively small(usually $m_{b}$<3.2), the PmP phase which looks like the first arrival phase may be observed without observing the Pn phase. In this case, the hypocentral parameters calculated by the existing method using the first arrival of P and S phases and by the method developed in this study using PmP and SmS phases show large differences. The computational results of determination of hypocentral parameters for actual earthquake events show that this method gives much smaller rms errors than the existing methods do.o.

  • PDF

An Improved Subfield Method for PDP Employing a Constant Slope Code (기울기가 일정한 코드를 사용한 개선된 PDP용 subfield 기법)

  • Lee, Young-Sam;Kim, Rin-Chul;Lee, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.504-512
    • /
    • 2002
  • This paper presents a new subfield method that can alleviate the visual artifact called the dynamic false contour (DFC), which occurs on plasma display panels. Nothing that the DFC is caused by the difference of time intervals between the adjacent subfields, we propose a constant slope code, in which the differences are maintained to be constant. Also, we propose a subfield code that can minimize the mean absolute error, considering the trade-off between the peak magnitude of the error and its duration. We will show that the proposed subfield method maintains an adequate performance in the view point of the human visual system, since the bound of the errors increases with the gray scale.

Effects of Waves and Free-Surface Boundary Conditions on the Flow A Surface-Piercing Flat Plate (수면 관통 평판주위 유동에 미치는 파의 영향 및 자유표면 경계조건에 대한 연구)

  • Choi, Jung-Eun;Stern, F.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.41-49
    • /
    • 1997
  • Computational results from Navier-Stokes equations are presented for the Stokes-wave/flat-plate boundary-layer and wake for small wave steepness(Ak=0.01), including exact and approximate treatments of the viscous free-surface boundary conditions. The macro-scale flow indicate that the variations of the external-flow pressure gradients cause acceleration or deceleration of the streamwise velocity component and alternating direction of the cross flow. Remarkably, the wake displays a greater response, i.e., a bias with regard to favorable as compared to adverse pressure gradients. The micro-scale flow indicates that the free-surface boundary conditions have a profound influence over the boundary layer and near/intermediate wake. Order-of-magnitude estimates are conformed to the computational results. And appreciable errors are introduced through approximations to the free-surface boundary conditions.

  • PDF

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.

A study on the determination of Ultrasonic Travel Time by Norm Phase-Time Method (위상시간법에 의한 초음파전파시간의 결정에 관한 연구)

  • 이은방
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 1994
  • In this paper, a new algorithm to measure the ultrasonic travel time is proposed, which is fundamental to estimate distance depth and volume in several media. Pulse wave has been used to measure travel time of transmitted signal. However, due to the characteristic of transducer and propagation, the received signal is so distorted that it is difficult to measure travel time, which is propagation, the received signal is so distorted that it is difficult to measure travel time, which is to be time difference between transmitted and received signals. In this proposed method, transmitted and received signal are transformed respectively into norm phase newly designed by this paper and displayed on phase-time curve. And travel time is simply determined by the arithmetic numerical mean of time difference at the identical norm phase on the phase-time curves of transmitted and received signals. This method has several features; firstly, travel time is calculated analytically with high accuracy by least square error method, secondly, it is useful to compare the difference of signal magnitude for time information, thirdly, noise and discrete errors are relatively small, finally, the measurement accuracy is not influenced by D.C. bias. In particular, this method is useful and applicable to measuring very short distance and sound speed with high accuracy.

  • PDF

Quantification of predicted uncertainty for a data-based model

  • Chai, Jangbom;Kim, Taeyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.860-865
    • /
    • 2021
  • A data-based model, such as an AAKR model is widely used for monitoring the drifts of sensors in nuclear power plants. However, since a training dataset and a test dataset for a data-based model cannot be constructed with the data from all the possible states, the model uncertainty cannot be good enough to represent the uncertainty of estimations. In fact, the errors of estimation grow much bigger if the incoming data come from inexperienced states. To overcome this limitation of the model uncertainty, a new measure of uncertainty for a data-based model is developed and the predicted uncertainty is introduced. The predicted uncertainty is defined in every estimation according to the incoming data. In this paper, the AAKR model is used as a data-based model. The predicted uncertainty is similar in magnitude to the model uncertainty when the estimation is made for the incoming data from the experienced states but it goes bigger otherwise. The characteristics of the predicted model uncertainty are studied and the usefulness is demonstrated with the pressure signals measured in the flow-loop system. It is expected that the predicted uncertainty can quite reduce the false alarm by using the variable threshold instead of the fixed threshold.

Accuracy of casts produced from conventional and digital workflows: A qualitative and quantitative analyses

  • Abduo, Jaafar
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.138-146
    • /
    • 2019
  • PURPOSE. Comparing the accuracy of casts produced from digital workflow to that of casts produced from conventional techniques. MATERIALS AND METHODS. Whole arch alginate (ALG) and polyvinyl siloxane (PVS) impressions were taken with stock trays and custom trays, respectively. The ALG impressions were poured with type III dental stone, while the PVS impressions were poured with type IV dental stone. For the digital workflow, IOS impressions were taken and physical casts were produced by 3D printing. In addition, 3D printed casts were produced from images obtained from a laboratory scanner (LS). For each technique, a total of 10 casts were produced. The accuracies of the whole arch and separated teeth were virtually quantified. RESULTS. Whole arch cast accuracy was more superior for PVS followed by LS, ALG, and IOS. The PVS and ALG groups were inferior in the areas more susceptible to impression material distortion, such as fossae and undercut regions. The LS casts appeared to have generalized errors of minor magnitude influencing primarily the posterior teeth. The IOS casts were considerably more affected at the posterior region. On the contrary, the IOS and LS casts were more superior for single tooth accuracy followed by PVS and ALG. CONCLUSION. For whole arch accuracy, casts produced from IOS were inferior to those produced from PVS and ALG. The inferior outcome of IOS appears to be related to the span of scanning. For single tooth accuracy, IOS showed superior accuracy compared to conventional impressions.

Development of a Quadrilateral Enhanced Assumed Strain Element for Efficient and Accurate Thermal Stress Analysis (효과적인 열응력 해석을 위한 사각형 추가 변형률 요소의 개발)

  • Ko, Jin-Hwan;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1205-1214
    • /
    • 1999
  • A new quadrilateral plane stress element is developed for efficient and accurate analysis of thermal stress problems. It is convenient to use the same mesh and the same shape functions for thermal analysis and stress analysis. But, because of the inconsistency between deformation related strain field and thermal strain field, oscillatory responses and considerable errors in stresses are resulted in. To avoid undesired oscillations, strain approximation is enhanced by supplementing several assumed strain terms based on the variational principle. Thermal deformation is incorporated into the generalized mixed variational principle for displacement, strain and stress fields, and basic equations for the modified enhanced assumed strain method are derived. For the stress approximation of bilinear elements, the $5{\beta}$ version of Pian and Sumihara is adopted. The numerical results for several problems show that the present element behaves well and reduces oscillatory responses. it also results in almost the same magnitude of error as compared with the quadratic element.

Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors (볼 베어링과 형상오차를 갖는 하우징의 끼워 맞춤에 따른 베어링 진동 및 피로 수명의 영향)

  • Lee, Young-Keun;Lee, Seok-Hoon;Jung, Il-Kwon;Cha, Cheol-Hwan;Han, Hyo-Seup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.441-451
    • /
    • 2006
  • It is known that ball bearings mounted in housing or on shaft are playing a key role to keep it running smoothly. The roundness of a housing bore on which bearing outer ring is mounted with interference has directly affected the running accuracy of bearing. The running accuracy of bearing, therefore, can extend the significant influence to the rotating machinery as well. In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after mounted in housing bore are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then Newton-Raphson iterative method was introduced to be utilized in the analysis. The results show that the vibration magnitude of ball bearing fitted into housing unit is appeared considerably larger than the one of its pre-assembling. And theoretical $L_{10}$ life which ninety percent of the bearing population will endure decreased in about fifty percent.