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a b s t r a c t

A data-based model, such as an AAKR model is widely used for monitoring the drifts of sensors in nuclear
power plants. However, since a training dataset and a test dataset for a data-based model cannot be
constructed with the data from all the possible states, the model uncertainty cannot be good enough to
represent the uncertainty of estimations. In fact, the errors of estimation grow much bigger if the
incoming data come from inexperienced states. To overcome this limitation of the model uncertainty, a
new measure of uncertainty for a data-based model is developed and the predicted uncertainty is
introduced. The predicted uncertainty is defined in every estimation according to the incoming data. In
this paper, the AAKR model is used as a data-based model. The predicted uncertainty is similar in
magnitude to the model uncertainty when the estimation is made for the incoming data from the
experienced states but it goes bigger otherwise. The characteristics of the predicted model uncertainty
are studied and the usefulness is demonstrated with the pressure signals measured in the flow-loop
system. It is expected that the predicted uncertainty can quite reduce the false alarm by using the
variable threshold instead of the fixed threshold.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A data-based model is widely used due to its ease to use and its
applicability to a complex system, of which the operating mecha-
nism is not known in detail. Unlike first-principle models which are
based on physical equations, it can incorporate all of the func-
tionality of the system by collecting process parameters measured
over the operating range of plants. Therefore, it has been imple-
mented to monitor the condition of equipment during operation in
nuclear power plants [1]. Especially, it has been played an impor-
tant role to monitor the drifts of sensors for extending calibration
interval since unnecessary calibration might result in not only
damage and degradation of sensors but also increase of mainte-
nance cost [2,3].

The data-based model, however, is only accurate when applied
to the same or similar operating conditions under which the data
were collected. When plant operating conditions are changing, the
model extrapolates outside the trained space and the results cannot
be trusted. Therefore, it is required to inform the accuracy or the
uncertainty of the estimates. Some of data-based models catego-
rized as probabilistic model such as a Gaussian Process Regression
by Elsevier Korea LLC. This is an
(GPR) model provide uncertainties of the prediction assuming the
Gaussian process [4]. Such data-based probabilistic models are
actively utilized in many fields including nuclear industries as well
as other industries [5,6]. On the other hand, some of data-based
models such as an Auto-Associate Kernel Regression(AAKR)
model, estimate states without the uncertainty of their prediction
since they are not probabilistic models. For the purpose of using
those kinds of data-based models for nuclear plants, Electric Power
Research Institute (EPRI) of US proposed a concept for quantifying
the uncertainty by historical data: the model uncertainty [7].

However, the uncertainties of the prediction are expected to
vary with the incoming data to be estimated. Furthermore, it is
expected that the uncertainties for inexperienced states increase
substantially when the characteristics of the inexperienced states
are different from those of the experienced state. According to the
above the reasons, the model uncertainty is hardly validated. To
overcome the limitations, the new method to quantify the pre-
dicted uncertainty depending on the data is proposed. The pre-
dicted uncertainty is defined and validated for the case of an AAKR
model with the data acquired from the flow loop system and its
usefulness is demonstrated. It shows better performance for the
inexperienced region of states and reduce the false alarms resulting
from the model uncertainty.
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2. Estimation of predicted uncertainties for a data-based
model

2.1. Data-based model

A data-based model such as an AAKR model can be utilized to
estimate the state of the sensors when the historical data are
meaningfully correlated [8,9]. Provided that the number of associ-
ated sensors is P and each sensor has N historical data, the memory
matrix of an AAKR model is an N �P matrix M of which each
element is denoted byMij. Then themathematical expression of the
AAKR model in a matrix form is Eq. (1):

bX ¼ wTMPN
i¼1wi

(1)

Where,bX is a 1� P vector denoting the estimated states of a 1� P vector
Xw is the N � 1 wt vector

wi is the i-th weight
For each sensor,

bX j ¼
PN

i¼1wiMijPN
i¼1wi

for j ¼ 1;2;…; P (2)

wi ¼KðDi; hÞ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2ph2

p e�
D2
i

2h2 (3)

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP
j¼1

�
Mij � Xj

�2vuut for i¼1;2;…;N (4)

Where,bX j is the j-th element of bX and is the estimate of a vector Xwi is
the i-th weight when the Gaussian Kernel is used.

h is a hyperparameter
Di is the Euclidean distance between Xj and Mij
2.2. Model uncertainty of a data-based model

Provided that Xj is the j-th row vector of the matrix X of Section

2.1 and bX j is that of their state estimates. In general, the model
uncertainty of a data-basedmodel is estimatedwith Eq. (5) through

Eq. (7) where bs2
ε
is the variance of the noise from independent

factors of Xtst . Xtst is the test data for calculating the model uncer-
tainty, and A is Ntst � 1 matrix for calculating bias, respectively [7].

MSEðbXtstÞ¼ 1
Ntst

XNtst

i¼1

�bXtst;i � Xtst;i
�2 (5)

BiasðbXtstÞ¼A ,MSEðbXtstÞ�VarðbXtstÞ�A,bs2
ε

(6)

U¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbXtstÞ þ ½BiasðbXtstÞ�2

q
(7)

Where,bs2
ε
is the variance of the noise

The abovemodel uncertainty is defined to be used as the criteria
of the classification [7]. However, since the model uncertainty
depends only on the test data, that cannot represent the uncer-
tainty of the prediction for the unseen data which may happen in
the future. In fact, the test data cannot include all the possible states
and the model uncertainty cannot cover all the range of the
uncertainties.
2.3. Predicted uncertainties for a data-based model

In general, the test data used for evaluating the model uncer-
tainty cannot be obtained from all the possible states of the pro-
cesses. Therefore, the model uncertainty is not good enough to
denote the performance of the model. To overcome this limitation
of the model uncertainty, the predicted uncertainty is proposed to
represent the uncertainty of prediction.

The predicted uncertainty is defined as Eq. (8) which is very
similar to the uncertainty definition as in eq. (9) which is root-
square-average of the difference between the data and the esti-
mate. In fact, the predicted uncertainty can be considered as the
weighted uncertainty depending on the importance of data which
is similar concept of the AAKR model. Therefore, the same equa-
tions for AAKR model are used to calculate weights and distance as
in Eq. (3) and Eq. (4), respectively. Weights can bemodeledwith the
various Kernel functions with hyperparameter h and distance is the
Euclidean distance. They determine the effective range of the
memory data to be used for estimation.

Upredict ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1wi

PP
j¼1

�
Mij � bXj

�2PN
i¼1wi

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

wi

Neq
jMi � bX j2

vuut (8)

U¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðxi � xÞ2
N

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

1
N
ðxi � xÞ2

vuut (9)

Where,

Mi is the row vector of matrix MbX is the estimated vector
Neq is the equivalent number of data
xi is the data to be used for estimation
x is the mean of xi’s
N is the number of data
The predicted uncertainty interval is defined as Eq. (10) using t-

distribution considering the size of the data to be evaluated.

UIpredict ¼ tc
�
bNeq;95%

�
Upredict (10)

Where,
tc is the critical value of the student t-distribution with the 95%

confidence level and degree of freedom bNeq.
b is the hyperparameter which is related to the size of memory

matrix.
The hyperparameter h and b should be determined to make the

predicted uncertainty be approximated to the model uncertainty
for the experienced region. However, if the incoming data were
located far from the memory data, the equivalent number of data
Neq would reduce according to the distance from the memory data.
As the equivalent number of data is smaller, the uncertainty in-
terval UIpredict is larger based on the t-distribution. Since the
equivalent number of data is dependent on the size of the memory
data, b is designed to controls the predicted uncertainty interval for
the inexperience region. The predicted uncertainty interval of the
data-based model can be estimated for every incoming data.



Fig. 1. The flow loop system.

Fig. 2. Pressure signals at 9 locations depicted in Fig. 1 and flow rate signal.
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Fig. 3. The model uncertainty interval and the predicted uncertainty interval when the test data are estimated. (Red dot: measured signal, black line: estimated signal, green lines:
model uncertainty interval, vertical bars: predicted uncertainty interval). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 4. Pressure 2 signal measured with Sensor B (blue line) and the drift signal made
intentionally of the measured pressure 2 (red line). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of this
article.)
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3. Evaluation of the proposed predicted uncertainty

3.1. Experimental set-up and the predicted uncertainty interval

To examine the characteristics of the proposed predicted un-
certainty, the data were measured from a flow loop system as in
Fig. 1. The system consists of a pump, an electrical heater, control
valves, a pressurizer, a heat exchanger, and pipes. The flow rates
and the pressure are controlled by the variable speed pump and the
flow control valve. Fig. 2 shows examples of the pressure signals
measured at 9 locations in Fig. 1 and the flow rate signal. Pressures
vary according to the flow rates and the locations. In nuclear power
plants, multiple sensors are placed to increase sensing reliability at
important locations. At location 2, three pressure sensors (Sensor A,
Sensor B and Sensor C) are installed and the pressures were
measured at the same time. All sensors are calibrated and normal.
The train dataset, the validation dataset and the test dataset are
randomly sampled from thewhole range of the data at location 2 in
various flow conditions as in Fig. 2. The AAKR model for estimating
the pressure at location 2 was developed with those datasets.

Fig. 3 shows the model uncertainty interval (between two green
lines), the predicted uncertainty interval (blue bar) centered at the
estimates of the model (black line) and the measured points (red
dots) of each 3 pressure sensors when the data from the test dataset
are estimated as incoming data. Since the test dataset was sampled
from the same region as the training dataset, model estimations are
very accurate and the uncertainty intervals are very small. The
predicted uncertainty intervals look similar to the model uncer-
tainty interval. The measured data are located within not only the
model uncertainty intervals but also the predicted uncertainty in-
terval of the estimations as expected since the sensors are normal.
This means that the predicted uncertainty is statistically a good
performance indicator as the model uncertainty for the trained and
tested region. However, the uncertainty of prediction for inexpe-
rienced data could be different from the model uncertainty.

3.2. Uncertainty interval for inexperienced data

To classify the drift of the sensor, the residuals, which is the
difference between the measured data and the estimates by the
model are compared with the uncertainty intervals. If the residuals
are located within the uncertainty interval, the sensor is classified
as normal. Therefore, the data-based model should provide the
estimates and the uncertainty at the same time. Furthermore, the
model should be developed by the data of normal states since the
estimates of the model are assumed to be normal. However, the
training dataset cannot include all the normal state of the system.
Thus, the effect of the inexperienced data should be examined.

There are two kinds of inexperienced data. One is the abnormal-
state inexperienced data and the other is out-of-range normal-state
inexperienced data since the train dataset cannot include all the
operating range of the process in general. It is also obvious that the
uncertainty of the data-based model for the inexperienced region
cannot be the same as that for the experienced.

To examine the former case, one of three pressure signals at
location 2 (Pressure 2 of Sensor B) was intentionally made drifted
slightly starting from the time of 2100 s as in Fig. 4. The blue line is
the normal signal and the red line is the drifted signal. Fig. 5 shows
the measured signal (red dot), the estimated signal (black line), the
model uncertainty interval (green lines) and the predicted



Fig. 5. Uncertainty intervals of Sensor A, B and C (Red dot: measured signal, black line: estimated signal, green lines: model uncertainty interval, vertical bars: predicted uncertainty
interval). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Model estimates and uncertainty intervals for inexperienced data (Red dot: measured signal, black line: estimated signal, green lines: model uncertainty interval, vertical
bars: predicted uncertainty interval). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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uncertainty intervals (vertical bar). Both the model uncertainty
interval and the predicted uncertainty intervals are almost same in
the whole region as in Fig. 5 a) since the measured data are in the
range of training dataset. For Sensor A and Sensor C, the data are
located within the uncertainty intervals but it can be noticed that
the drifted data are out of uncertainty intervals for Sensor B as in
Fig. 5 b). It means that both the model uncertainty and the pre-
dicted uncertainty are good indicator to identify the drift sensors
evenwhen the sensors are abnormal if themeasured data are in the
range of training dataset.

To examine the case of the out-of-range normal-state inexpe-
rienced data, the signals including the higher-pressure operating
condition than that of the training dataset were used as incoming
data. As shown in Fig. 6 a). The front part of the graph belongs to the
range of the training dataset and the latter part of the graph starting
from around 1460 s comes from the data of the inexperienced re-
gion. All the sensors are calibrated and normal. In the inexperience
region, however, the measured data are outside the model uncer-
tainty interval, which leads to identify that all the sensors are
drifted. This shows that the model uncertainty interval is not good
enough to be used as the threshold to classify the drift and that the
errors of the model in the inexperience region are greater than the
model uncertainty.

However, the predicted uncertainty can be estimated in every
estimation considering the characteristics of the incoming data.
Since the predicted uncertainty is defined using the same weights
as the AAKR model, it has statistically similar characteristics as the
AAKR model in dealing with the importance of data. It also become
larger as the incoming data go farther from the training dataset
since the equivalent number of data to be used to calculate the
uncertainty reduces. Those characteristics of the predicted uncer-
tainty are shown in Fig. 6 b). The top graph of Fig. 6 b) shows that
the measured data are within the range of the predicted uncer-
tainty intervals and that the classification can be made with small
uncertainty since it is in the experienced region. In the middle
graph of Fig. 6 b) which comes from both the experienced and the
inexperienced region, the measured data are noticed to be out of
the model uncertainty interval due to the estimation error of the
data-based model even though the sensors are normal. However,
the predicted uncertainty intervals cover the errors of the
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estimation by increasing the intervals and prevent the wrong de-
cision which the model uncertainty might cause in the inexperi-
enced region. Finally, in the last graph of Fig. 6 b), it is shown that
the predicted uncertainties go bigger as the incoming data points
are farther from the experienced region. Even though the predicted
uncertainty intervals do not cover for all the incoming data, they
show much better performance than the model uncertainty inter-
val in reducing the false alarm due to the estimation errors.

4. Conclusions

A data-based model estimates the normal state of the incoming
data but errors of the estimation depend on the characteristics of
the incoming data. Errors of the estimation increase substantially
when the characteristics of the incoming data are different from
those of training and test dataset. Therefore, it has been required
that the uncertainty of estimation should be quantified in every
estimation considering the characteristics of the incoming data.

In this paper, the predicted uncertainty is introduced and its
characteristics are studied comparing with those of the model
uncertainty which has been used for deciding the threshold of
classification. To demonstrate the benefits of the predicted uncer-
tainty, the pressure data were measured with 3 pressure sensors at
the same location in the flow-loop system. One of the pressure
signal was made drifted on purpose. The predicted uncertainties
have similar values in magnitude as the model uncertainty when
the incoming data belong to the same operating range of training
dataset. Therefore, the detection of the drifted signal can be made
by either the predicted uncertainty or the model uncertainty.
However, when the incoming data are out of range of the training
dataset, it is noticed that the residuals increase beyond the model
uncertainty interval and the sensors are classified as drifted sensors
even though they are all well calibrated since the data-basedmodel
provides rather large error which cannot be covered by the model
uncertainty. This means that the model uncertainty may lead to the
wrong conclusion due to the bigger error. On the other hand, the
predicted uncertainties depend on the incoming data and provide
reasonable results. When the incoming data are out of the training
dataset, the predicted uncertainty grows big and it covers the errors
made by the data-based model. Therefore, it is possible to make
false alarms be substantially reduced with the predicted uncer-
tainty. In conclusion, the proposed method to calculate the pre-
dicted uncertainty is useful for monitoring the drift sensors by
quantifying the uncertainty in every estimation considering the
characteristics of the incoming data.
Funding

This work was supported by the Nuclear Safety Research Pro-
gram through the Korea Foundation Of Nuclear Safety(KoFONS)
using the financial resource granted by the Nuclear Safety and Se-
curity Commission(NSSC) of the Republic of Korea (No. 1805007).
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.net.2020.08.002.
References

[1] H. Hashemian, On-line monitoring applications in nuclear power plants, Prog.
Nucl. Energy 53 (2) (2011) 167e181.

[2] J.B. Coble, R.M. Meyer, P. Ramuhalli, L.J. Bond, H. Hashemian, B. Shumaker,
D. Cummins, A Review of Sensor Calibration Monitoring for Calibration Interval
Extension in Nuclear Power Plants. No. PNNL-21687. Pacific Northwest National
Lab(PNNL), 2012. Richland, WA USA.

[3] J.W. Hines, R. Seibert, Technical Review of On-Line Monitoring Techniques for
Performance Assessment (NUREG/CR-6895) Vol. 1. State-Of-The-Art, US Nuclear
Regulatory Committee, 2006.

[4] C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, MIT
Press, 2006.

[5] S. Lee, J. Chai, An enhanced prediction model for the on-line monitoring
method using the Gaussian process regression, Journal of Mechanical Science
and Technology. 33 (2019) 2249e2257, in re-view.

[6] Yi Liu, Qing-Yang Wu, Junghui Chen, Active selection of informative data for
sequential quality enhancement of soft sensor models with latent variables,
Ind. Eng. Chem. Res. 56 (16) (2017) 4804e4817.

[7] J.W. Hines, R. Seibert, Technical Review of On-Line Monitoring Techniques for
Performance Assessment (NUREG/CR-6895) Vol. 2, in: Theoretical Issues, US
Nuclear Regulatory Committee, 2008. May.

[8] F. Di Maio, P. Baraldi, E. Zeo, R. Seraoui, Fault detection in nuclear power plants
components by a combination of statistical methods, IEEE Trans. Reliab. 62 (4)
(2013) 833e845.

[9] N. Sairam, S. Mandal, Thermocouple Sensor Fault Detection Using Auto-
Associative Kernel Regression and Generalized Likelihood Ratio Test., Com-
puter, Electrical & Communication Engineering (ICCECE), 2016 International
Conference on, IEEE, 2016, pp. 1e6.

https://doi.org/10.1016/j.net.2020.08.002
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref1
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref1
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref1
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref2
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref2
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref2
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref2
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref3
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref3
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref3
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref4
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref4
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref5
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref5
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref5
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref5
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref6
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref6
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref6
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref6
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref7
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref7
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref7
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref8
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref8
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref8
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref8
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref9
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref9
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref9
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref9
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref9
http://refhub.elsevier.com/S1738-5733(20)30797-X/sref9

