• 제목/요약/키워드: magnetostrictive

검색결과 257건 처리시간 0.021초

The Magnetic and Magnetostrictive Properties of Melt-Spun Ribbons of B Containing Terfenol-D Alloys

  • Kim, S. R.;S. Y. Kang;S. H. Lim
    • Journal of Magnetics
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 1997
  • The magnetic and magnetostrictive properties of melt-spun ribbons of the alloys (R0.33Fe0.67)1-xBx (R=Tb0.3Dy0.7 and 0$\leq$x$\leq$0.06) are ivestigated as a function of wheel speed during melt-quenching. The saturation magnetiation of the alloys with a crystalline phase ranges from 70 to 80 emu/g and does not vary substantially with the B content. The saturation magnetization of an amorphous phase, which is formed at the condition of thigh wheel speed and high B content, is reduced significantly, however. The coercive force is minimum at x= 0.02 and increases monotonously with the further increase of B content when the microstructure mainly consists of a crystalline phase, but again it is reduced significantly by the formation of an amorphous phase. The low field sensitivity of magnetostriction with magnetic field is found to be good for the alloys with x$\leq$0.04 over a wide range of wheel speed. This magnetostrictive behavior is in contrast with that observed previously for Dy-Fe and Tb-Fe based alloys and is thought to be due to low intrinsic magnetocrystalline anisotropy of the compound.

  • PDF

박막성형 기술 및 MEMS 공정을 이용한 자기변형 위치변환기 (Fabrication of a Magnetostrictive Transpositioner using Thin Film Deposition and MEMS Techniques)

  • 이흥식;조종두;이상교
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1617-1620
    • /
    • 2007
  • This paper presents a magnetostrictive transpositioner and its fabrication process. To get a transposition movement without shifting or twisting, it is designed as an array type. To fabricate the suggested design, micromachining and selective DC magnetron sputtering processes are combined. TbDyFe film is sputter-deposited on the back side of the bulk micromachined transpositioner, with the condition as: Ar gas pressure below $1.2{\times}10^{-9}$ torr, DC input power of 180W and heating temperature of up to $250^{\circ}C$ for the wireless control of each array component. After the sputter process, magnetization and magnetostriction of each sample are measured. X-ray diffraction studies are also carried out to determine the film structure and thickness of the sputtered film. For the operation, each component of the actuator has same length and out-of-plane motion. Each component is actuated by externally applied magnetic fields up to 0.5T and motion of the device made upward movement. As a result, deflections of the device due to the movement for the external magnetic fields are observed.

  • PDF

온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법 (A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation)

  • 유은주;박영우;노명규
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.

자기자화자왜센서를 이용한 설비 off-line Health Monitoring 시스템 개발 (Development of Health Monitoring System Using Self Magnetization Magnetostrictive Sensor)

  • 김이곤;문홍식;김준;김지현
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.481-486
    • /
    • 2012
  • 본 논문은 석유화학 플랜트 등의 결함을 자기자왜센서기술을 활용하여 주기적으로 검사하는 오프라인 모니터링이 가능한 'Health Monitoring System'의 개발과 그 활용성에 대해 확인하였다. 기존의 유도파 검사 방식은 용접부위 검사에는 적용할 수 없고, 일반적인 부위에서도 노이즈 및 반사파 등으로 검사의 정밀도에 한계를 갖고 있다. 본 기술은 주기적인 모니터링을 통해 결함의 진전에 따른 변위정보를 활용할 수 있음으로서, 더 정밀한 검사가 가능하기 때문에 석유화학 플랜트에서 매우 유용하게 활용될 수 있을 것으로 사료된다.

Magnetostrictive Sensor를 이용한 용접결함 검출에 관한 연구 (A Study About Weld Defects Detection By Using A Magnetostrictive Sensor)

  • 나현호;김일수;서주환;손성우;정재원;김지선;이지혜
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1279-1287
    • /
    • 2009
  • An increasingly competitive business environment has been concentrated on industries to reduce the operating costs. Industries such as gas, oil, petrochemical, chemical, and electric power have employed for the operation and used for large equipment or structures that require a high capital investment. In order to meet these requirements, the industries are increasingly moving toward saving the experimental verification and computer simulation. Therefore industries to reduce the maintenance costs without compromising the operational safety have been forced on finding for better and more efficient methods to inspect their equipment and structures. In this study, it focused on the development the real-time non-contract monitoring system as an efficient tool for the experimental study of weld defects based on the relationship between the measured voltage and input parameters.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

초자왜소자의 자왜 특성의 측정 (Measurement of the Magnetostrictive Properties of Giant Magnetostrictive Alloy)

  • 백창욱;김용권
    • 한국자기학회지
    • /
    • 제4권4호
    • /
    • pp.303-306
    • /
    • 1994
  • 본 논문에서는 초자왜소자 $Terfenol-D(Tb_{0.3}Dy_{0.7}Fe_{1.9~1.95})$의 인가자장에 따른 자왜의 변화를 측정하였고, 잔류 자왜 및 초자왜소자의 온도 상승에 의한 열팽창 변형의 영향을 조사 하였다. 또한 초자왜소자에 3.5~14 MPa의 압축 응력을 인가하면서 자왜의 변화를 조사하였다. 그 결과는 인 가 압축 응력이 7 MPa인 경우 1500 Oe의 자장에서의 자왜는 1000 ppm이었으나 압축 응력을 가하지 않은 경 우는 400 ppm이었다. 또한 인가 압축 응력이 커짐에 따라서 자왜가 포화되는 자장의 크기도 커졌다. 잔류 변형과 히스테리시스가 관측되었으며, 따라서 액츄에이터로 이용할 때는 이를 보상하는 기구가 필요하며 또 한 열팽창에 의한 변형도 액츄에이터 응용시에는 고려하여야 한다.

  • PDF

주사형 OPMT 개발을 위한 자왜형 초음파 변환기 설계 및 제작 (Design and Fabrication of Magnetostrictive Transducers for Scanning OPMT Development)

  • 이호철;김형윤;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.856-859
    • /
    • 2005
  • The OPMT(Orientation-adjustable Patch-type Magnetostrictive Transducer) was proposed as a tool for generating and measuring the ultrasonic Lamb wave in plate type structures. This sensor has a lot of new features compared to the traditional piezo-type ultrasonic transducers. As an example, it does not need any kind of wiring for lunching or measuring ultrasonic waves. But it has also definite limitation for practical usage as a nondestructive testing tool in that it cannot help rotating the direction of ultrasonic wave manually. The idea for 'scanning OPMT' is proposed in this respect. Two kinds of basic ideas for rotating the wave direction not manually but electrically are proposed. The fabrication of the transducer and the testing for Identifying the primary characteristics are done for one of the proposed transducers. The results says that there are the possibilities as a new tool for NDE in that the proposed transducer follows well the characteristics of the traditional OPMT. But there are also the 1imitations to overcome.

  • PDF

자왜형 원거리 초음파검사에서 실시간 수신신호 처리를 위한 소프트웨어 접근 (A Software Approach for the Realtime Received Signal Processing in Magnetostrictive Long-Range Ultrasonic Testing)

  • 허원녕;임형택;김태경;최명선
    • 비파괴검사학회지
    • /
    • 제32권5호
    • /
    • pp.540-544
    • /
    • 2012
  • 위상배열 기술에 기반을 둔 통상의 초음파검사에서처럼, 자왜형 원거리 초음파검사에서도 실시간 수신신호 처리를 위해 복잡한 전자회로들을 사용하여왔다. 본 연구는 위상 보상, 노이즈 필터링, 파형 변환 등과 같은 필수적인 작업들을 기존의 하드웨어 접근보다는 소프트웨어 접근을 이용하여 수행할 때, 보다 유연하고 효율적인 실시간 신호처리가 가능해진다는 것을 보여준다. 이는 비용효율적인 원거리 초음파검사 시스템 구축과 검사 결과 분석에 기여할 것이다.

Effect of Dimension Control of Piezoelectric Layer on the Performance of Magnetoelectric Laminate Composite

  • Cho, Kyung-Hoon
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.611-614
    • /
    • 2018
  • Laminate composites composed of $0.95Pb(Zr_{0.52}Ti_{0.48})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3$ piezoelectric ceramic and Fe-Si-B based magnetostrictive amorphous alloy are fabricated, and the effect of control of the areal dimensions and the thickness of the piezoelectric layer on the magnetoelectric(ME) properties of the laminate composites is studied. As the aspect ratio of the piezoelectric layer and the magnetostrictive layer increases, the maximum value of the ME voltage coefficient(${\alpha}_{ME}$) increases and the intensity of the DC magnetic field at which the maximum ${\alpha}_{ME}$ value appears decreases. Moreover, as the thickness of the piezoelectric layer decreases, ${\alpha}_{ME}$ tends to increase. The ME composites exhibit ${\alpha}_{ME}$ values higher than $1Vcm^{-1}Oe^{-1}$ even at the non-resonance frequency of 1 kHz. This study shows that, apart from the inherent characteristics of the piezoelectric composition, small thicknesses and high aspect ratios of the piezoelectric layer are important dimensional determinants for achieving high ME performance of the piezoelectric-magnetostrictive laminate composite.