• Title/Summary/Keyword: magnetometer

Search Result 496, Processing Time 0.025 seconds

Microstructure and Magnetic Properties of Zn1-xCoxO Thin Films Grown by Sol-Gel Process (Sol-Gel 법으로 제작한 Zn1-xCoxO 박박의 미세조직 및 자기적 특성)

  • Ko, Yoon-Duk;Tai, Weon-Pil;Kim, Eung-Kwon;Kim, Ki-Chul;Choi, Choon-Gi;Kim, Jong-Min;Song, Joon-Tae;Park, Tae-Seok;Suh, Su-Jeung;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.475-482
    • /
    • 2005
  • Zn$_{l-x}$Co$_{x}$O (x = 0.05 - 0.20) films were grown on Coming 7059 glass by sol-gel process. A homogeneous and stable Zn$_{l-x}$Co$_{x}$O sol was prepared by dissolving zinc acetate dihydrate (Zn(CH$_{3}$COO)$_{2}$$\cdot$2H$_{2}$O), cobalt acetate tetrahydrate ((CH$_{3}$)$_{2}$$\cdot$CHOH) and aluminium chloride hexahydrate (AlCl$_{3}$ $\cdot$ 6H$_{2}$O) as solute in solution of isopropanol ((CH$_{3}$)$_{2}$$\cdot$CHOH) and monoethanolamine (MEA:H$_{2}$NCH$_{2}$CH$_{2}$OH). The films grown by spin coating method were postheated in air at 650°C for 1 h and annealed in the condition of vacuum (5 $\times$ 10$^{-6}$ Torr) at 300$^{\circ}C$ for 30 min and investigated the nature of c-axis preferred orientation and physical properties with different Co concentrations. Znl_xCOxO thin films with different Co concentrations were well oriented along the c-axis, but especially a highly c-axis oriented Zn$_{l-x}$Co$_{x}$O thin film was grown at 10 at$\%$ Co concentration. The transmittance spectra showed that Zn$_{l-x}$Co$_{x}$O thin films occur typical d-d transitions and sp-d exchange interaction became activated with increasing Co concentration. The electrical resistivity of the films at 10 at$\%$ Co had the lowest value due to the highest c-axis orientation. X-ray photoelectron spectroscopy and alternating gradient magnetometer analyses indicated that no Co metal cluster was formed, and the ferromagnetic properties appeared, respectively. The characteristics of the electrical resistivity and room temperature ferromagnetism of Zn$_{l-x}$Co$_{x}$O thin films suggested the possibility for the application to dilute magnetic semiconductors.

Crystallographic and Magnetic Properties of a Perovskite La1/3Sr2/3FeO2.96 (페롭스카이트 La1/3Sr2/3FeO2.96의 결정학적 및 자기적 성질에 관한 연구)

  • Yoon, Sung-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.167-171
    • /
    • 2005
  • Detailed aspects of the charge disproportionation (CD) transition for a polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ were studied with the X-ray diffraction, $M\ddot{o}ssbauer$ spectroscopy, and SQUID magnetometer. The crystal structure was found to be rhombohedral with a space group R/3c. The lattice parameters were $a_R=5.4874\;\AA,\;and\;a_R=60.07^{\circ}$, respectively. $M\ddot{o}ssbauer$ spectra were taken within a wide range of temperature from 4.2 K up to room temperature. In the low temperature region, the spectra were comprised of two superimposed sextets which originated from $Fe^{3+}\;and\;Fe^{5+}$, respectively. This was the antiferromagnetic mixed valence state produced by the charges disproportionated into two different species. In the high temperature region, however, only a singlet from $Fe^{3.6+}$ was observed, indicating that it was a paramagnetic averaged valence state. The CD transition occurred in the temperature range from 175 K to 200 K, in which the two phases coexisted. The origin for the CD transition was explained by the thermally generated fast hopping of electrons. Hysteresis loop showed that there existed a strong antiferromagnetic interaction among magnetic ions. As the temperature increased thru the CD transition temperature, it was very likely that the interaction between $Fe^{3+}\;and\;Fe^{5+}$ was replaced by a more stronger one.

A comparative study of nondestructive geomagnetic survey with archeological survey for detection of buried cultural properties in Doojeong-dong site, Cheonan, Chungnam Province (매장문화재 확인을 위한 자력탐사 및 발굴 비교연구: 충남 천안시 두정동 발굴지역)

  • Suh, Man-Cheol;Lee, Nam-Seok
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.175-184
    • /
    • 2000
  • A nondestructive experimental feasibility study was conducted using magnetometer to find buried cultural objects at pottery and steel matters in low-relief mountaineous area of Doojeong-dong, Cheonan, Chungnam Province from May 23 to July 18, 1998. Magnetic survey was carried out with $20cm{\times}20cm$ grid in a site of $20m{\times}40m$ before excavation, and the distribution of magnetic anomalies was compared with the results of excavation. Magnetic sensor was located on the surface of ground during the magnetic survey on the basis of an experimental result. Positive magnetic anomalies of maximum 130 nT are found over a pair of potteries. Magnetic anomaly map reveals several anomalous points in the 1st and 4th quadrants of the survey site, from where potteries and their fragments were confirmed. Six points out of seven points cprrelated with magnetic anomaly are found contain earthwares, whereas a magnetically uncorrelated location produced earthware made of unbaked clay. Steel waste such as cans and wires hidden in soil and bushes also influenced magnetic anomalies. Therefore, it is better to remove such steel wastes prior to magnetic survey if possible. Some magnetically anomalous points produced no archaeological object on excavation. This may be explained by shallower level of excavation than burial depth.

  • PDF

Geophysical Studies on the Geological Structure in the Southern Sea of Korea (한국남해(韓國南海)의 지질구조(地質構造)에 관(關)한 지구물리학적(地球物理學的) 연구(硏究))

  • Cho, Kyu Jang;Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.14 no.2
    • /
    • pp.77-91
    • /
    • 1981
  • An airborne magnetometer survey was carried out over an offshore area of about $200,000km^2$ from the southeastern, southern and western part of Korea. Detailed magnetic studies on the geological structure of the southern part of above area ($100,000km^2$) was accomplished. Residual aeromagnetic map was made in order to delineate magnetic provinces, magnetic lineaments and sedimentary basins by application of least square method using computer system. To determine the depth of the sedimentary basins pseudo-gravimetric method was applied. 1. The area studied is divided into four magnetic provinces for the purpose of interpretation on the basis of the magnetic maps. 2. Near shore area and its attached islands of southern part (fiirst and second magnetic province) can be regarded as being the extension from the land geology due to presentation of strong magnetic anomalies and shallow magnetic basements. 3. Magnetic lineament 1-1 is strong magnetic anomalous region which is presumably relevant to volcanic activities in Cretaceous. The depth of magnetic basement of the lineament was determined to 1,500 m. Negative magnetic anomalous zones B1-1 and B1-2 which represent Tertiary basins showed depth of magnetic basement 3 km and 4 km each. The latter can be interpreted as extension of the Taiwan basin which is consisted of Tertiary sediments. 4. Magnetic lineament 2-1 coincide with Rainan-Fukien massif running NE-SW direction. A lineament located in central part of magnetic lineament 2-1 is well connected with extension of Sobacksan anticlinal axis on land. Volcanic rocks in Gyongsang system concentrated along this lineament. 5. The characteristics of magnetic pattern in the southern Yellow sea basin of western part of Jeju island show weaker magnetic anomalies and deeper magnetic basements than first and second magnetic provinces indicating geological structure of this basin seems to be quite different from that of Jeju strait. 6. In southern part of Jeju island, smoother magnetic pattern develope southward. Maximum depth of magnetic basement in sedimentary basins BIV-1 and BIV-2 were determined down to 6,000 m increasing its thickness toward Taiwan up to 11,000 m in the shelf area off Taichung, Taiwan. Judging from the fact that hydrocarbon was founded in the Tertiary sediments of western coastal area of Taiwan, it can be expected that hydrocarbon will be existed in these sedimentary basins of southern part of Jeju island.

  • PDF

A Quality-control Experiment Involving an Optical Televiewer Using a Fractured Borehole Model (균열모형시추공을 이용한 광학영상화검층 품질관리 시험)

  • Jeong, Seungho;Shin, Jehyun;Hwang, Seho;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • An optical televiewer is a geophysical logging device that produces continuous high-resolution full-azimuth images of a borehole wall using a light-emitting-diode and a complementary metal-oxide semiconductor image sensor to provide valuable information on subsurface discontinuities. Recently, borehole imaging logging has been applied in many fields, including ground subsidence monitoring, rock mass integrity evaluation, stress-induced fracture detection, and glacial annual-layer measurements in polar regions. Widely used commercial borehole imaging logging systems typically have limitations depending on equipment specifications, meaning that it is necessary to clearly verify the scope of applications while maintaining appropriate quality control for various borehole conditions. However, it is difficult to directly check the accuracy, implementation, and reliability for outcomes, as images derived from an optical televiewer constitute in situ data. In this study, we designed and constructed a modular fractured borehole model having similar conditions to a borehole environment to report unprecedented results regarding reliable data acquisition and processing. We investigate sonde magnetometer accuracy, color realization, and fracture resolution, and suggest data processing methods to obtain accurate aperture measurements. The experiment involving the fractured borehole model should enhance not only measurement quality but also interpretations of high-resolution and reliable optical imaging logs.

Small scale magNetospheric and Ionospheric Plasma Experiments; SNIPE mission

  • Hwang, Junga;Lee, Jaejin;Shon, Jongdae;Park, Jaeheung;Kwak, Young-Sil;Nam, Uk-Won;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.40.3-41
    • /
    • 2017
  • Korea Astronomy and Space Science Institute The observation of particles and waves using a single satellite inherently suffers from space-time ambiguity. Recently, such ambiguity has often been resolved by multi-satellite observations; however, the inter-satellite distances were generally larger than 100 km. Hence, the ambiguity could be resolved only for large-scale (> 100 km) structures while numerous microscale phenomena have been observed at low altitude satellite orbits. In order to resolve those spatial and temporal variations of the microscale plasma structures on the topside ionosphere, SNIPE mission consisted of four (TBD) nanosatellites (~10 kg) will be launched into a polar orbit at an altitude of 700 km (TBD). Two pairs of satellites will be deployed on orbit and the distances between each satellite will be from 10 to 100 km controlled by a formation flying algorithm. The SNIPE mission is equipped with scientific payloads which can measure the following geophysical parameters: density/temperature of cold ionospheric electrons, energetic (~100 keV) electron flux, and magnetic field vectors. All the payloads will have high temporal resolution (~ 16 Hz (TBD)). This mission is planned to launch in 2020. The SNIPE mission aims to elucidate microscale (100 m-10 km) structures in the topside ionosphere (below altitude of 1,000 km), especially the fine-scale morphology of high-energy electron precipitation, cold plasma density/temperature, field-aligned currents, and electromagnetic waves. Hence, the mission will observe microscale structures of the following phenomena in geospace: high-latitude irregularities, such as polar-cap patches; field-aligned currents in the auroral oval; electro-magnetic ion cyclotron (EMIC) waves; hundreds keV electrons' precipitations, such as electron microbursts; subauroral plasma density troughs; and low-latitude plasma irregularities, such as ionospheric blobs and bubbles. We have developed a 6U nanosatellite bus system as the basic platform for the SNIPE mission. Three basic plasma instruments shall be installed on all of each spacecraft, Particle Detector (PD), Langmuir Probe (LP), and Scientific MAGnetometer (SMAG). In addition we now discuss with NASA and JAXA to collaborate with the other payload opportunities into SNIPE mission.

  • PDF

Enhancement for Magnetic Property of Ba-ferrite for Perpendicular Magnetic Recording Using Ultrasonic Dispersion (초음파 분산에 의한 수직자기기록용 Ba-ferrite의 자기적 특성 향상)

  • Choi, Hyun-Seung;Kim, Chang-Gon;Jang, Hak-Jin;Jung, Ji-Hyung;Yoon, Seog-Young;Kim, Tae-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.758-763
    • /
    • 2002
  • The various ultrasonic energies (28 kHz, 40 kHz, 70 kHz) were used to improve the magnetic properties of Ba-ferrite as the perpendicular magnetic recording materials. In the sheet formation process, the different orientation hars were used to orientate perpendicularly the dispersed Ba-ferrite to sheet. Throughout these experiments, we have obtained relatively higher value of S. Q. (Squreness Ratio : 0.783) and O. R. (Orientation Ratio : 2.87) magnetic properties at 2 h ultrasonic treatment of 40 kHz ultrasonic energy. With aid of SEM(Scanning Electron Microscopy) images, the obtained sheet with dispersed of Ba-ferrite could be used for perpendicular magnetic recording due to orientated to easy magnetization axis, c-axis. In addition, the value of S. Q. of sheet decreased with increasing applied magnetic field angle during measuring of S. Q. value with changing applied magnetic field angle by VSM (Vibrating Sample Magnetrometer). This result also induced the probability for prependicular magnetic recording.

Changes in Magnetic Properties When Manufacturing Cobalt-substituted Barium Ferrite Powder (Cobalt가 치환된 Barium Ferrite 분말 제조 시 자기적 특성변화)

  • Um, Myeong-Heon;Yeon, Je-Uk;Lee, Cha-Jin;Ha, Beom-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.30-39
    • /
    • 2020
  • Single-phase barium ferrite powder was synthesized using the sol-gel method. At this time, an attempt was made to find the optimal experimental conditions for the production of single-phase barium ferrite by varying the Fe to Ba molar ratio (Fe/Ba) and the heat treatment temperature. In addition, cobalt-substituted barium ferrite particles were prepared using cobalt, which has an excellent effect on coercivity control for the production of ferrite fine particles having a coercivity of 2.5 to 5.5 kOe for use in high-density magnetic recording media. The changes in the magnetic properties of these were investigated. X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), and field emission scanning electron microscopy (FE-SEM) were used to observe the synthesis of single-phase, and Fourier transform infrared spectroscopy (FT-IR) and energy dispersive X-ray spectrometry (EDS) were used to analyze the chemical structure and composition. The coercivity of the cobalt-substituted barium ferrite powder was measured by vibrating sample magnetometry (VSM). As a result, single-phase Barium ferrites were synthesized when the Fe/Ba molar ratio was 10, and the heat treatment temperature was 900 ℃. The coercivity decreased with increasing the amount of Co added. Barium ferrite, having a coercivity of 2.5 to 5.5 kOe for use in high-density magnetic recording media, was synthesized when the Co to Fe(Co/Fe) molar ratio was less than 0.16.

Structure and Magnetic Properties of Ho and Ni Co-doped BiFeO3 Ceramics

  • Hwang, J.S.;Yoo, Y.J.;Park, J.S.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.183-183
    • /
    • 2014
  • Recently, multiferroic materials gain much attention due to their fascinating fundamental physical properties. These materials offer wide range of potential applications such as data storage, spintronic devices and sensors, where both electronic and magnetic polarizations can be coupled. Among single-phase multiferroic materials, $BiFeO_3$ is typical because of the room-temperature magnetoelectric coupling in view of long-range magnetic- and ferroelectric-ordering temperatures. However, $BiFeO_3$ is well known to have large leakage current and small spontaneous polarization due to the existence of oxygen vacancies and other defects. Furthermore the magnetic moment of pure $BiFeO_3$ is very weak owing to its antiferromagnetic nature. Recently, various attempts have been performed to improve the multiferroic properties of $BiFeO_3$ through the co-doping at the A and the B sites, by making use of the fact that the intrinsic polarization and magnetization are associated with the lone pair of $Bi^{3+}$ ions at the A sites and the partially-filled 3d orbitals of $Fe^{3+}$ ions at the B sites, respectively. In this study, $BiFeO_3$, $Bi_{0.9}Ho_{0.1}FeO_3$, $BiFe_{0.97}Ni_{0.03}O_3$ and $Bi_{0.9}Ho_{0.1}Fe_{0.97}Ni_{0.03}O_3$ bulk compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Ho_2O_3$, $Fe_2O_3$ and $NiO_2$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ for 24 h to produce the samples. The samples were immediately put into an oven, which was heated up to $800^{\circ}C$ and sintered in air for 1 h. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent and temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer and superconducting quantum-interference device.

  • PDF

Design of Sensor Network for Estimation of the Shape of Flexible Endoscope (연성 대장내시경의 형상추정을 위한 센서네트워크의 설계)

  • Lee, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a method of shape prediction of an endoscope handling robot that can imitate a surgeon's behavior using a sensor network is suggested. Unit sensors, which are composed of a 3-axis magnetometer and 3-axis accelerometer pair comprise the network through CAN bus communication. Each unit of the sensor is used to detect the angle of the points in the longitudinal direction of the robot, which is made from a flexible tube. The signals received from the sensor network were filtered using a low pass Butterworth filter. Here, a Butterworth filter was designed for noise removal. Finally, the Euler angles were extracted from the signals, in which the noise was filtered by the low path Butterworth filter. Using this Euler angle, the position of each sensor on the sensor network is estimated. The robot body was assumed to consist of links and joints. The position of each sensor can be assumed to be attached to the center of each link. The position of each link was determined using the Euler angle and kinematics equation. The interpolation was carried out between the positions of the sensors to be able to connect each point smoothly and obtain the final posture of the endoscope in operation. The experimental results showed that the shape of the colonoscope can be visualized using the Euler angles evaluated from the sensor network suggested and the shape of serial link estimated from the kinematics chain model.