SM-P019

Structure and Magnetic Properties of Ho and Ni Co-doped BiFeO₃ Ceramics

J. S. Hwang¹, Y. J. Yoo¹, J. S. Park², J. -H. Kang³, K. H. Lee⁴, B. W. Lee⁴, K. W. Kim⁵, and Y. P. Lee¹

¹Dept. of Physics, Hanyang University, Seoul 133-791, ²Institute of Basic Sciences and Dept. of Physics, Sungkyunkwan University, Suwon 446-740, ³Dept. of Nano & Electronic Physics, Kookmin University, Seoul 136-702, ⁴Dept. of Electronic Physics, Hankuk University of Foreign Studies, Yongin 449-791, ⁵Dept. of Information Display, Sunmoon University, Asan 336-708

Recently, multiferroic materials gain much attention due to their fascinating fundamental physical properties. These materials offer wide range of potential applications such as data storage, spintronic devices and sensors, where both electronic and magnetic polarizations can be coupled. Among single-phase multiferroic materials, BiFeO₃ is typical because of the room-temperature magnetoelectric coupling in view of long-range magneticand ferroelectric-ordering temperatures. However, BiFeO3 is well known to have large leakage current and small spontaneous polarization due to the existence of oxygen vacancies and other defects. Furthermore the magnetic moment of pure BiFeO₃ is very weak owing to its antiferromagnetic nature. Recently, various attempts have been performed to improve the multiferroic properties of BiFeO3 through the co-doping at the A and the B sites, by making use of the fact that the intrinsic polarization and magnetization are associated with the lone pair of Bi³⁺ ions at the A sites and the partially-filled 3d orbitals of Fe³⁺ ions at the B sites, respectively. In this study, BiFeO₃, Bi_{0.9}Ho_{0.1}FeO₃, BiFe_{0.97}Ni_{0.03}O₃ and Bi_{0.9}Ho_{0.1}Fe_{0.97}Ni_{0.03}O₃ bulk compounds were prepared by solid-state reaction and rapid sintering. High-purity Bi₂O₃, Ho₂O₃, Fe₂O₃ and NiO₂ powders with the stoichiometric proportions were mixed, and calcined at 500°C for 24 h to produce the samples. The samples were immediately put into an oven, which was heated up to 800°C and sintered in air for 1 h. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent and temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer and superconducting quantum-interference device.

Keywords: Multiferroic, Doped BiFeO₃, Magnetic properties, Ferroelectric properties