• Title/Summary/Keyword: magnetocaloric effects

Search Result 14, Processing Time 0.034 seconds

Prediction of Transition Temperature and Magnetocaloric Effects in Bulk Metallic Glasses with Ensemble Models (앙상블 기계학습 모델을 이용한 비정질 소재의 자기냉각 효과 및 전이온도 예측)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.363-369
    • /
    • 2024
  • In this study, the magnetocaloric effect and transition temperature of bulk metallic glass, an amorphous material, were predicted through machine learning based on the composition features. From the Python module 'Matminer', 174 compositional features were obtained, and prediction performance was compared while reducing the composition features to prevent overfitting. After optimization using RandomForest, an ensemble model, changes in prediction performance were analyzed according to the number of compositional features. The R2 score was used as a performance metric in the regression prediction, and the best prediction performance was found using only 90 features predicting transition temperature, and 20 features predicting magnetocaloric effects. The most important feature when predicting magnetocaloric effects was the 'Fe' compositional ratio. The feature importance method provided by 'scikit-learn' was applied to sort compositional features. The feature importance method was found to be appropriate by comparing the prediction performance of the Fe-contained dataset with the full dataset.

Magnetocaloric Properties of AlFe2B2 Including Paramagnetic Impurities of Al13Fe4

  • Lee, J.W.;Song, M.S.;Cho, K.K.;Cho, B.K.;Nam, Chunghee
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1555-1560
    • /
    • 2018
  • $AlFe_2B_2$ produced by using a conventional arc melter has a ferromagnetic material with a Curie temperature ($T_C$) of around 300 K, but the arc-melt generates paramagnetic $Al_{13}Fe_4$ impurities during the synthesis of $AlFe_2B_2$. Impurities are brought to cause a decrease in magnetocaloric effects (MCEs). To investigate the effects of $Al_{13}Fe_4$ impurities on MCEs, we prepared and compared ascast and acid-treated samples, where the acid treatment was performed to remove the $Al_{13}Fe_4$ impurities. For the structural analysis, powder X-ray diffraction was carried out, and the measured data were subjected to a Rietveld refinement. The presence of $Al_{13}Fe_4$ impurities in the as-cast sample was observed in the phase analysis measurements. Magnetic properties were investigated by using Superconducting Quantum Interference Device (SQUID) measurements for the as-cast and the acid-treated $AlFe_2B_2$ samples. From isothermal magnetization measurements, Arrott plots were obtained showing that the transition of $AlFe_2B_2$ has a second-order magnetic phase transition (SOMT). The $T_C$ and the saturation magnetization increased for the acid-treated sample due to removal of the paramagnetic impurities. As a consequence, the magnetic entropy change ($-{\Delta}S$) increased in the pure $AlFe_2B_2$ samples, but the full width at half maximum in the plot of $-{\Delta}S$ vs. T decreased due to the absence of impurities.

Magnetic and Magnetocaloric Properties of Perovskite Pr0.5Sr0.5-xBaxMnO3

  • Hua, Sihao;Zhang, Pengyue;Yang, Hangfu;Zhang, Suyin;Ge, Hongliang
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.386-390
    • /
    • 2013
  • This paper studies the effects of A-site substitution by barium on the magnetic and magnetocaloric properties of $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ (x = 0, 0.04, 0.08 and 0.1). The tetragonal crystal structures of the samples are confirmed by room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ba doping content has been investigated. The samples of all doping contents undergo the second order phase transition. As the concentration of Ba increased, the maximum entropy change ($|{\Delta}S_M|_{max}$) increased gradually, from 1.15 J $kg^{-1}$ $K^{-1}$ (x = 0) to 1.36 J $kg^{-1}$ $K^{-1}$ (x = 0.1), in a magnetic field change of 1.5 T. The measured value of $T_C$ is 265 K, 275 K, 260 K and 250 K for x = 0, 0.04, 0.08 and 0.1, respectively. If combining these samples for magnetic refrigeration, the temperature range of ~220 K and 290 K, where |${\Delta}S_M$|max is stable at ~1.27 J $kg^{-1}$ $K^{-1}$ and RCP = 88.9 $J{\cdot}kg^{-1}$ for ${\Delta}H$ = 1.5 T. $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ compounds, are expected to be suitable for magnetic-refrigeration application due to these magnetic properties.

The Magnetic and Magnetocaloric Properties of the Perovskite La0.7Ca0.3Mn1-xNixO3

  • Hua, Sihao;Zhang, Pengyue;Yang, Hangfu;Zhang, Suyin;Ge, Hongliang
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.34-38
    • /
    • 2013
  • This paper studies the effects of the Mn-site substitution by nickel on the magnetic properties and the magnetocaloric properties of $La_{0.7}Ca_{0.3}Mn_{1-x}Ni_xO_3$ (x = 0, 0.05 and 0.1). The orthorhombic crystal structures of the samples are confirmed by the room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ni doping content was investigated. The samples with x = 0 had the first order phase transition, while the samples with x = 0.05 and 0.1 had the second order phase transition. As the concentration of Ni increased, the maximum entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) decreased gradually, from 2.78 $J{\cdot}kg^{-1}{\cdot}K^{-1}$ (x = 0) to 1.02 $J{\cdot}kg^{-1}{\cdot}K^{-1}$ (x = 0.1), in a magnetic field change of 15 kOe. The measured value of $T_C$ was 185 K, 150 K and 145 K for x = 0, 0.05 and 0.1, respectively. The phase transition temperatures became wider as x increased. It indicates that the Mn-site substitution by Ni may be used to tailor the Curie temperature in $La_{0.7}Ca_{0.3}Mn_{1-x}Ni_xO_3$.