DOI QR코드

DOI QR Code

Magnetocaloric Properties of AlFe2B2 Including Paramagnetic Impurities of Al13Fe4

  • Lee, J.W. (Department of Photonics and Sensors, Hannam University) ;
  • Song, M.S. (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Cho, K.K. (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Cho, B.K. (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Nam, Chunghee (Department of Photonics and Sensors, Hannam University)
  • Received : 2018.04.20
  • Accepted : 2018.05.30
  • Published : 2018.11.30

Abstract

$AlFe_2B_2$ produced by using a conventional arc melter has a ferromagnetic material with a Curie temperature ($T_C$) of around 300 K, but the arc-melt generates paramagnetic $Al_{13}Fe_4$ impurities during the synthesis of $AlFe_2B_2$. Impurities are brought to cause a decrease in magnetocaloric effects (MCEs). To investigate the effects of $Al_{13}Fe_4$ impurities on MCEs, we prepared and compared ascast and acid-treated samples, where the acid treatment was performed to remove the $Al_{13}Fe_4$ impurities. For the structural analysis, powder X-ray diffraction was carried out, and the measured data were subjected to a Rietveld refinement. The presence of $Al_{13}Fe_4$ impurities in the as-cast sample was observed in the phase analysis measurements. Magnetic properties were investigated by using Superconducting Quantum Interference Device (SQUID) measurements for the as-cast and the acid-treated $AlFe_2B_2$ samples. From isothermal magnetization measurements, Arrott plots were obtained showing that the transition of $AlFe_2B_2$ has a second-order magnetic phase transition (SOMT). The $T_C$ and the saturation magnetization increased for the acid-treated sample due to removal of the paramagnetic impurities. As a consequence, the magnetic entropy change ($-{\Delta}S$) increased in the pure $AlFe_2B_2$ samples, but the full width at half maximum in the plot of $-{\Delta}S$ vs. T decreased due to the absence of impurities.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. D. Y. Goswami and F. Kreith, Handbook of Energy Efficiency and Renewable Energy (CRC Press, Berkeley, 2007).
  2. K. A. Gschneidner Jr. and V. K. Pecharsky, Int. J. Refrig. 31, 1094 (2008). https://doi.org/10.1016/j.ijrefrig.2007.12.002
  3. O. Gut eisch, M. A. Willard, E. Bruck, C. H. Chen, S. G. Sankar and J. P. Liu, Adv. Mater. 23, 821 (2011). https://doi.org/10.1002/adma.201002180
  4. V. Franco, J. S. Bl'azquez, B. Ingale and A. Conde, Annu. Rev. Mater. Res. 42, 305 (2012). https://doi.org/10.1146/annurev-matsci-062910-100356
  5. E. Warburg, Ann. Phys. (Leipzig) 13, 141 (1881).
  6. P. Wiess and A. Piccard, J. Phys. Theor. Appl. 7, 103 (1917). https://doi.org/10.1051/jphystap:019170070010300
  7. P. Debye, Ann. Phys. 81, 1154 (1926).
  8. W. F. Giauque, J. Amer. Chem. Soc. 49, 1864 (1927). https://doi.org/10.1021/ja01407a003
  9. V. K. Pecharsky and K. A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997). https://doi.org/10.1103/PhysRevLett.78.4494
  10. O. Tegus, E. Bruck, K. H. J. Buschow and F. R. De Boer, Nature 415, 150 (2002). https://doi.org/10.1038/415150a
  11. J. T. Lim, H. T. Cho, S. J. Kim, C. S. Kim and Y. B. Lee, J. Korean Phys. Soc. 71, 575 (2017). https://doi.org/10.3938/jkps.71.575
  12. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa and A. Planes, Nat. Mater. 4, 450 (2005). https://doi.org/10.1038/nmat1395
  13. L. F. Bao, F. X. Hu, L. Chen, J. Wang, J. R. Sun and B. G. Shen, Appl. Phys. Lett. 101, 162406 (2012). https://doi.org/10.1063/1.4760262
  14. W. Jeitschko, Acta Crystallogr. Sect. B 25, 163 (1969).
  15. X. Tan, P. Chai, C. M. Thompson and M. Shatruk, J. Am. Chem. Soc. 135, 9553 (2013). https://doi.org/10.1021/ja404107p
  16. J. Cedervalla, M. S. Anderssonb, T. Sarkarb, E. K. Delczeg-Czirjakc, L. Bergqvistd, T. C. Hansene, P. Beranf, P. Nordbladb and M. Sahlberga, J. Alloys Comp. 664, 784 (2016). https://doi.org/10.1016/j.jallcom.2015.12.111
  17. S. Hirt, F. Yuan, Y. Mozharivskyj and H. Hillebrecht, Inorg. Chem. 55, 9677 (2016). https://doi.org/10.1021/acs.inorgchem.6b01467
  18. R. Barua, B. T. Lejeune, L. Ke, G. Hadjipanayis, E. M. Levin, R. W. McCallum, M. J. Kramer and L. H. Lewis, J. Alloy Comp. 745, 505 (2018). https://doi.org/10.1016/j.jallcom.2018.02.205
  19. P. Popcevic, A. Smontara, J. Ivkov, M. Wencka, M. Komelj, P. Jeglic, S. Vrtnik, M. Bobnar, Z. Jaglicic, B. Bauer, P. Gille, H. Borrmann, U. Burkhardt, Y. Grin and J. Dolinsek, Phys. Rev. B 81, 184203 (2010). https://doi.org/10.1103/PhysRevB.81.184203
  20. M. A. Albedah, F. Nejadsattari, Z. M. Stadnik and J. Przewoznik, J. Alloys Comp. 619, 839 (2015). https://doi.org/10.1016/j.jallcom.2014.08.225
  21. J. Rodriguez-Carvajal, Physica B 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I
  22. M. F. J. Boeije, M. Maschek, X. F. Miao, N. V. Thang, N. H. Dijk and E. Bruck, J. Phys. D: Appl. Phys. 50, 174002 (2017). https://doi.org/10.1088/1361-6463/aa5db9
  23. T. A. Ho, S. H. Lim, T. L. Phan and S. C. Yu, J. Alloys Comp. 692, 687 (2017). https://doi.org/10.1016/j.jallcom.2016.09.097
  24. V. Franco, J. S. Bl'azquez and A. Conde, Appl. Phys. Lett. 89, 222512 (2016).
  25. V. Franco, R. Caballero-Flores, A. Conde, Q. Y. Dong and H. W. Zhang, J. Magn. Magn. Mater. 321, 1115 (2009). https://doi.org/10.1016/j.jmmm.2008.10.034

Cited by

  1. A progress report on the MAB phases: atomically laminated, ternary transition metal borides vol.65, pp.4, 2018, https://doi.org/10.1080/09506608.2019.1637090
  2. Movable and immovable magnets for two machines vol.63, pp.2, 2020, https://doi.org/10.3233/jae-190087
  3. Effect of the FeB Impurity on the Magnetic Properties of the Intermetallic Compound AlFe2B2 vol.77, pp.10, 2018, https://doi.org/10.3938/jkps.77.824
  4. Thermal stability of the nanolayered Fe 2 AlB 2 in nitrogen and argon atmospheres vol.104, pp.2, 2021, https://doi.org/10.1111/jace.17492