Browse > Article
http://dx.doi.org/10.3938/jkps.73.1555

Magnetocaloric Properties of AlFe2B2 Including Paramagnetic Impurities of Al13Fe4  

Lee, J.W. (Department of Photonics and Sensors, Hannam University)
Song, M.S. (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Cho, K.K. (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Cho, B.K. (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Nam, Chunghee (Department of Photonics and Sensors, Hannam University)
Abstract
$AlFe_2B_2$ produced by using a conventional arc melter has a ferromagnetic material with a Curie temperature ($T_C$) of around 300 K, but the arc-melt generates paramagnetic $Al_{13}Fe_4$ impurities during the synthesis of $AlFe_2B_2$. Impurities are brought to cause a decrease in magnetocaloric effects (MCEs). To investigate the effects of $Al_{13}Fe_4$ impurities on MCEs, we prepared and compared ascast and acid-treated samples, where the acid treatment was performed to remove the $Al_{13}Fe_4$ impurities. For the structural analysis, powder X-ray diffraction was carried out, and the measured data were subjected to a Rietveld refinement. The presence of $Al_{13}Fe_4$ impurities in the as-cast sample was observed in the phase analysis measurements. Magnetic properties were investigated by using Superconducting Quantum Interference Device (SQUID) measurements for the as-cast and the acid-treated $AlFe_2B_2$ samples. From isothermal magnetization measurements, Arrott plots were obtained showing that the transition of $AlFe_2B_2$ has a second-order magnetic phase transition (SOMT). The $T_C$ and the saturation magnetization increased for the acid-treated sample due to removal of the paramagnetic impurities. As a consequence, the magnetic entropy change ($-{\Delta}S$) increased in the pure $AlFe_2B_2$ samples, but the full width at half maximum in the plot of $-{\Delta}S$ vs. T decreased due to the absence of impurities.
Keywords
Magnetocaloric; Impurity; Magnetic cooling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. A. Ho, S. H. Lim, T. L. Phan and S. C. Yu, J. Alloys Comp. 692, 687 (2017).   DOI
2 V. Franco, J. S. Bl'azquez and A. Conde, Appl. Phys. Lett. 89, 222512 (2016).
3 V. Franco, R. Caballero-Flores, A. Conde, Q. Y. Dong and H. W. Zhang, J. Magn. Magn. Mater. 321, 1115 (2009).   DOI
4 O. Gut eisch, M. A. Willard, E. Bruck, C. H. Chen, S. G. Sankar and J. P. Liu, Adv. Mater. 23, 821 (2011).   DOI
5 V. Franco, J. S. Bl'azquez, B. Ingale and A. Conde, Annu. Rev. Mater. Res. 42, 305 (2012).   DOI
6 E. Warburg, Ann. Phys. (Leipzig) 13, 141 (1881).
7 P. Wiess and A. Piccard, J. Phys. Theor. Appl. 7, 103 (1917).   DOI
8 P. Debye, Ann. Phys. 81, 1154 (1926).
9 W. F. Giauque, J. Amer. Chem. Soc. 49, 1864 (1927).   DOI
10 V. K. Pecharsky and K. A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).   DOI
11 O. Tegus, E. Bruck, K. H. J. Buschow and F. R. De Boer, Nature 415, 150 (2002).   DOI
12 J. T. Lim, H. T. Cho, S. J. Kim, C. S. Kim and Y. B. Lee, J. Korean Phys. Soc. 71, 575 (2017).   DOI
13 T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa and A. Planes, Nat. Mater. 4, 450 (2005).   DOI
14 L. F. Bao, F. X. Hu, L. Chen, J. Wang, J. R. Sun and B. G. Shen, Appl. Phys. Lett. 101, 162406 (2012).   DOI
15 W. Jeitschko, Acta Crystallogr. Sect. B 25, 163 (1969).
16 X. Tan, P. Chai, C. M. Thompson and M. Shatruk, J. Am. Chem. Soc. 135, 9553 (2013).   DOI
17 P. Popcevic, A. Smontara, J. Ivkov, M. Wencka, M. Komelj, P. Jeglic, S. Vrtnik, M. Bobnar, Z. Jaglicic, B. Bauer, P. Gille, H. Borrmann, U. Burkhardt, Y. Grin and J. Dolinsek, Phys. Rev. B 81, 184203 (2010).   DOI
18 J. Cedervalla, M. S. Anderssonb, T. Sarkarb, E. K. Delczeg-Czirjakc, L. Bergqvistd, T. C. Hansene, P. Beranf, P. Nordbladb and M. Sahlberga, J. Alloys Comp. 664, 784 (2016).   DOI
19 S. Hirt, F. Yuan, Y. Mozharivskyj and H. Hillebrecht, Inorg. Chem. 55, 9677 (2016).   DOI
20 R. Barua, B. T. Lejeune, L. Ke, G. Hadjipanayis, E. M. Levin, R. W. McCallum, M. J. Kramer and L. H. Lewis, J. Alloy Comp. 745, 505 (2018).   DOI
21 M. A. Albedah, F. Nejadsattari, Z. M. Stadnik and J. Przewoznik, J. Alloys Comp. 619, 839 (2015).   DOI
22 J. Rodriguez-Carvajal, Physica B 192, 55 (1993).   DOI
23 M. F. J. Boeije, M. Maschek, X. F. Miao, N. V. Thang, N. H. Dijk and E. Bruck, J. Phys. D: Appl. Phys. 50, 174002 (2017).   DOI
24 K. A. Gschneidner Jr. and V. K. Pecharsky, Int. J. Refrig. 31, 1094 (2008).   DOI
25 D. Y. Goswami and F. Kreith, Handbook of Energy Efficiency and Renewable Energy (CRC Press, Berkeley, 2007).