• Title/Summary/Keyword: magneto-electro-elastic plate

Search Result 14, Processing Time 0.03 seconds

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate

  • Kondaiah, P.;Shankar, K.;Ganesan, N.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Under thermal environment, Magneto-Electro-Elastic (MEE) material exhibits pyroelectric and pyromagnetic effects which can be used for enhancing the performance of MEE sensors. Recently studies have been published on material constants such as pyroelectric constant and pyromagnetic constant for magneto-electro-thermo-elastic smart composite. Hence, the main aim of this paper is to study the pyroelectric and pyromagnetic effects on behavior of MEE plate under different boundary conditions subjected to uniform temperature. A numerical study is carried out using eight noded brick finite element under uniform temperature rise of 100 K. The study focused on the pyroelectric and pyromagnetic effects on system parameters like displacements, thermal stresses, electric potential, magnetic potential, electric displacements and magnetic flux densities. It is found that, there is a significant increase in electric potential due to the pyroelectric and pyromagnetic effects. These effects are visible on electric and magnetic potentials when CFFC and FCFC boundary conditions are applied. Additionally, the pyroelectric and pyromagnetic effects at free edge is dominant (nearly thrice the value in CFFC in comparison with FCFC) than at middle of the plate. This study is a significant contribution to sensor applications.

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

Structural stability analysis of nonlocal Megneto-Electro-Elastic(MEE) nano plates on elastic foundation (탄성지반위에 놓인 비국소 자기-전기-탄성 나노 판의 구조안정해석)

  • Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.52-60
    • /
    • 2017
  • This study examined the structural stability of nonlocal magneto-electro-elastic nano plates on elastic foundations using first-order shear deformation theory. Navier's method has been used to solve the buckling loads for all edges simply supported boundary conditions. On the other hand, biaxial buckling analysis of nano-plates has beenrarely studied. According to the Maxwell equation and the magneto-electro boundary condition, the change inthe magnetic and electric potential along the thickness direction of the magneto-electro-elastic nano plate wasdetermined. To reformulate the elasticity theory of the magneto- electro-elastic nano plate, the differential constitutive equation of Eringen was used and the governing equation of the nonlocal elasticity theory was studied using variational theory. The effects of the elastic foundation arebased on Pasternak's assumption. The relationship between nonlocal theory and local theory was analyzed through calculation results. In addition, structural stability problems were investigated according to the electric and magnetic potentials, nonlocal parameters, elastic foundation parameters, and side-to-thickness ratio. The results of the analysis revealedthe effects of the magnetic and electric potential. These calculations can be used to compare future research on new material structures made of magneto-electro-elastic materials.

Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads

  • Amir, Saeed;Arshid, Ehsan;Arani, Mohammad Reza Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.429-447
    • /
    • 2019
  • The present study analyzed free vibration of the three-layered micro annular/circular plate which its core and face sheets are made of saturated porous materials and FG-CNTRCs, respectively. The structure is subjected to magneto-electric fields and magneto-electro-mechanical pre loads. Mechanical properties of the porous core and also FG-CNTRC face sheets are varied through the thickness direction. Using dynamic Hamilton's principle, the motion equations based on MCS and FSD theories are derived and solved via GDQ as an efficient numerical method. Effect of different parameters such as pores distributions, porosity coefficient, pores compressibility, CNTs distribution, elastic foundation, multi-physical pre loads, small scale parameter and aspect ratio of the plate are investigated. The findings of this study can be useful for designing smart structures such as sensor and actuator.

Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.279-298
    • /
    • 2016
  • Present disquisition proposes an analytical solution method for exploring the buckling characteristics of porous magneto-electro-elastic functionally graded (MEE-FG) plates with various boundary conditions for the first time. Magneto electro mechanical properties of FGM plate are supposed to change through the thickness direction of plate. The rule of power-law is modified to consider influence of porosity according to two types of distribution namely even and uneven. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM plate under magneto-electrical field via Hamilton's principle. An analytical solution procedure is exploited to achieve the non-dimensional buckling load of porous FG plate exposed to magneto-electrical field with various boundary condition. A parametric study is led to assess the efficacy of material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage, boundary conditions, aspect ratio and side-to-thickness ratio on the non-dimensional buckling load of the plate made of magneto electro elastic FG materials with porosities. It is concluded that these parameters play remarkable roles on the dynamic behavior of porous MEE-FG plates. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Biaxial Buckling Analysis of Magneto-Electro-Elastic(MEE) Nano Plates using the Nonlocal Elastic Theory (비국소 탄성이론을 이용한 자기-전기-탄성 나노 판의 2방향 좌굴 해석)

  • Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.405-413
    • /
    • 2017
  • In this paper, we study the biaxial buckling analysis of nonlocal MEE(magneto-electro-elastic) nano plates based on the first-order shear deformation theory. The in-plane electric and magnetic fields can be ignored for MEE(magneto-electro-elastic) nano plates. According to magneto-electric boundary condition and Maxwell equation, the variation of magnetic and electric potentials along the thickness direction of the MME plate is determined. In order to reformulate the elastic theory of MEE(magneto-electro-elastic) nano-plate, the nonlocal differential constitutive relations of Eringen is used. Using the variational principle, the governing equations of the nonlocal theory are discussed. The relations between nonlocal and local theories are investigated by computational results. Also, the effects of nonlocal parameters, in-plane load directions, and aspect ratio on structural responses are studied. Computational results show the effects of the electric and magnetic potentials. These computational results can be useful in the design and analysis of advanced structures constructed from MEE(magneto-electro-elastic) materials and may be the benchmark test for the future study.

Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment

  • Mahesh, Vinyas;Kattimani, Subhaschandra;Harursampath, Dineshkumar;Trung, Nguyen-Thoi
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.267-292
    • /
    • 2019
  • The present article addresses the coupled free vibration problem of skew magneto-electro-elastic plates (SMEE) considering the temperature-moisture dependent material properties. The plate kinematics follows Reddy's higher order shear deformation theory. With the aid of finite element methods, the governing equations of motion are derived considering the Hamilton's principle and solved by adopting condensation technique. The influence of different temperature and moisture dependent empirical constants on the frequency response of SMEE plate has been assessed. In addition, the natural frequencies corresponding to various fields are evaluated and the effect of empirical constants on these coupled frequencies is determined. A detailed parametric study has been carried out to assess the individual effects of temperature and moisture dependent empirical constants along with their combined effect, aspect ratio, length-to-width ratio, stacking sequence and boundary conditions. The results reveal that the external environment as well as the geometrical skewness has a significant influence on the stiffness of the SMEE plates.