• 제목/요약/키워드: magneto thermoelastic solid

검색결과 20건 처리시간 0.029초

Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation

  • Lata, Parveen;Kaur, Iqbal
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.779-793
    • /
    • 2019
  • The purpose of this research paper is to depict the thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation in generalized LS theories of thermoelasticity. The Laplace and Fourier transform techniques have been used to find the solution of the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain numerically. The effect of two temperature and relaxation time are depicted graphically on the resulting quantities.

Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • 제9권4호
    • /
    • pp.343-358
    • /
    • 2020
  • The present research deals with the time-harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation due to inclined load and laser pulse. Generalized theory of thermoelasticity has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with uniform angular velocity and subjected to thermally insulated and isothermal boundaries. The inclined load is supposed to be a linear combination of a normal load and a tangential load. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of angle of inclination of normal and tangential load for Green Lindsay Model and time-harmonic source for Lord Shulman model is depicted graphically on the resulting quantities.

Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source

  • Lata, Parveen;Kaur, Iqbal
    • Advances in materials Research
    • /
    • 제8권2호
    • /
    • pp.83-102
    • /
    • 2019
  • The present research deals with the time harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation and without energy dissipation due to inclined load. Lord-Shulman theory has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with a uniform angular velocity. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of time harmonic source and rotation is depicted graphically on the resulting quantities.

Modelling of magneto-thermoelastic plane waves at the interface of two prestressed solid half-spaces without energy dissipation

  • Kakar, Rajneesh;Kakar, Shikha
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1299-1323
    • /
    • 2015
  • A model for reflection and refraction of magneto-thermoelastic SV-waves at the interface of two transversely isotropic and homogeneous solid half spaces under initial stress by applying classical dynamical theory of thermoelasticity is purposed. The reflection and refraction coefficients of SV-waves are obtained with ideal boundary conditions for SV-wave incident on the solid-solid interface. The effects of magnetic field, temperature and initial stress on the amplitude ratios after numerical computations are shown graphically with MATLAB software for the particular model.

Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • 제8권3호
    • /
    • pp.219-245
    • /
    • 2019
  • The present research deals in two dimensional (2D) transversely isotropic magneto generalized thermoelastic solid without energy dissipation and with two temperatures due to time harmonic sources in Lord-Shulman (LS) theory of thermoelasticity. The Fourier transform has been used to find the solution of the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are calculated in transformed domain and further calculated in the physical domain numerically. The effect of two temperature are depicted graphically on the resulting quantities.

Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • 제8권5호
    • /
    • pp.415-437
    • /
    • 2019
  • The present research deals with two-dimensional axisymmetric deformation in transversely isotropic magneto thermoelastic solid with and without energy dissipation, with two temperature and time-harmonic source. The proposed model is helpful for finding the type of relations between mechanical and thermal fields as most of the structural elements of heavy industries are frequently related to mechanical and thermal stresses at a higher temperature. The Hankel transform has been used to find a solution to the problem. The displacement components, stress components, and temperature distribution with the horizontal distance in the physical domain are calculated numerically. The effect of time-harmonic source and two temperature is depicted graphically on the resulting quantities.

Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid

  • Lata, Parveen;Kaur, Iqbal
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.245-255
    • /
    • 2019
  • In present research, we have considered transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation due to inclined load. The mathematical model has been formulated using Lord-Shulman theory. The Laplace and Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of rotation and angle of inclination of inclined load is depicted graphically on the resulting quantities.

Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force

  • Lata, Parveen;Singh, Sukhveer
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.109-117
    • /
    • 2020
  • The present article is concerned about the study of disturbances in a homogeneous nonlocal magneto-thermoelastic medium under the combined effects of hall current, rotation and two temperatures. The model under assumption has been subjected to normal force. Laplace and Fourier transform have been used for finding the solution to the field equations. The analytical expressions for conductive temperature, stress components, normal current density, transverse current density and displacement components have been obtained in the physical domain using a numerical inversion technique. The effects of hall current and nonlocal parameter on resulting quantities have been depicted graphically. Some particular cases have also been figured out from the current work. The results can be very important for the researchers working in the field of magneto-thermoelastic materials, nonlocal thermoelasticity, geophysics etc.

Reflection and refraction of magneto-thermoelastic plane wave at the pre-stressed liquid-solid interface in generalized thermoelasticity under three theories

  • Kakar, Rajneesh;Kakar, Shikha
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.577-601
    • /
    • 2015
  • The thermomagnetic effect on plane wave propagation at the liquid-solid interface with nonclassical thermoelasticity is investigated. It is assumed that liquid-solid half-space is under initial stress. Numerical computations are performed for the developed amplitude ratios of P, SV and thermal waves under Cattaneo-Lord-Shulman theory, Green-Lindsay theory and classical thermoelasticity. The system of developed equations is solved by the application of the MATLAB software at different angles of incidence for Green and Lindsay model. The effect of initial stress and magnetic field in the lower half-space are discussed and comparison is made in LS, GL and CT models of thermoelasticity. In the absence of magnetic field, the obtained results are in agreement with the same results obtained by the relevant authors. This study would be useful for magneto-thermoelastic acoustic device field.

Effect of rotation and inclined load in a nonlocal magneto-thermoelastic solid with two temperature

  • Lata, Parveen;Singh, Sukhveer
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.23-39
    • /
    • 2022
  • This work deals with the two-dimensional deformation in a homogeneous isotropic nonlocal magneto-thermoelastic solid with two temperatures under the effects of inclined load at different inclinations. The mathematical model has been formulated by subjecting the bounding surface to a concentrated load. The Laplace and Fourier transform techniques have been used for obtaining the solution to the problem in transformed domain. The expressions for nonlocal thermal stresses, displacements and temperature are obtained in the physical domain using a numerical inversion technique. The effects of nonlocal parameter, rotation and inclined load in the physical domain are depicted and illustrated graphically. The results obtained in this paper can be useful for the people who are working in the field of nonlocal thermoelasticity, nonlocal material science, physicists and new material designers. It is found that there is a significant difference due to presence and absence of nonlocal parameter.