• Title/Summary/Keyword: magnetized water

Search Result 18, Processing Time 0.022 seconds

Effect of the magnetized water supplementation on blood glucose, lymphocyte DNA damage, antioxidant status, and lipid profiles in STZ-induced rats

  • Lee, Hye-Jin;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.34-42
    • /
    • 2013
  • This study investigated the effects of magnetized water supplementation on blood glucose, DNA damage, antioxidant status, and lipid profiles in streptozotocin (STZ)-induced diabetic rats. There were three groups of 4-week-old male Sprague-Dawley rats used in the study: control group (normal control group without diabetes); diabetes group (STZ-induced diabetes control); and magnetized water group (magnetized water supplemented after the induction of diabetes using STZ). Before initiating the study, diabetes was confirmed by measuring fasting blood glucose (FBS > 200 dl), and the magnetized water group received magnetized water for 8 weeks instead of general water. After 8 weeks, rats were sacrificed to measure the fasting blood glucose, insulin concentration, glycated hemoglobin level, degree of DNA damage, antioxidant status, and lipid profiles. From the fourth week of magnetized water supplementation, blood glucose was decreased in the magnetized water group compared to the diabetes group, and such effect continued to the 8th week. The glycated hemoglobin content in the blood was increased in the diabetes group compared to the control group, but decreased significantly in the magnetized water group. However, decreased plasma insulin level due to induced diabetes was not increased by magnetized water supplementation. Increased blood and liver DNA damages in diabetes rats did significantly decrease after the administration of magnetized water. In addition, antioxidant enzyme activities and plasma lipid profiles were not different among the three groups. In conclusion, the supplementation of magnetized water not only decreased the blood glucose and glycated hemoglobin levels but also reduced blood and liver DNA damages in STZ-induced diabetic rats. From the above results, it is suggested that the long-term intake of the magnetized water over 8 weeks may be beneficial in both prevention and treatment of complications in diabetic patients.

Effects of Water Quality Characteristics in Magnetized Supplying Water for Cows (축우용 급수기에 자화수 발생장치가 수질에 미치는 영향)

  • Ki, Kwang-Seok;Lee, Wang-Shik;Lee, Hyun-June;Kim, Sang-Bum;Yang, Seung-Hak;Jeong, Ha-Yeon;Kang, Hee-Seol;Ahn, Byeong-Seog;Kim, Hyeon-Shup
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.145-148
    • /
    • 2008
  • This study compared the water quality supplied to dairy cows using a conventional and a magnetized automatic water trough. A magnetized device was attached to water troughs and water quality characteristics (hardness, bacterial counts, mineral contents and water pH) were estimated before and after its usage and compared with conventional system. The bacterial counts were significantly reduced in water supplied through magnetized water trough compared to that supplied through conventional system. Iron contents in water were reduced with the usage of magnetized water trough. Hardness, pH, chlorine, fluorine and nitrite contents of water were not affected by magnetization of water.

  • PDF

Study on the Effect of Magnetized Water in the Precipitation Reaction of Salts and in the Hydration Hardening Speed of Gympsum Plaster (자화수가 염류의 침전반응 및 석고의 가수 경화속도에 미치는 영향에 관한 연구)

  • Jeon, Sang-Il;Kim, Dong-Ryul;Lee, Sung-Hyun;Kim, Dong-Suk;Lee, Suk-Keun
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Although it has been known that the magnetized water shows different physicochemical properties, the exact nature of the magnetized water is not clearly elucidated yet. We have explored the effect of magnetized water in the precipitation of salts, i.e., $BaSO_4,\;BaCO_3,\;CaCO_3$, and in the hydration hardening of gypsum plaster. The amount of salt precipitation was measured by salt filter assay in water bath, $25^{\circ}C$ and also the hydration hardening speed of gypsum plaster was measured by the Gillmore needle method at room temperature. When the salt ions were interacted with each other in 0.1 M concentration, the precipitation reactions of $BaSO_4,\;BaCO_3$, and $CaCO_3$ increased more in the magnetized water, about 3.6%, 3.8%, and 4.4%, respectively, than in the control water. And the hydration hardening speed of gypsum plaster increased more in the magnetized water than in the control water. These data suggest that the magnetized water, which is supposed to be organized by forming numerous nano/micro clusters, induces the increase of salt precipitation and also accelerates the hydration hardening speed of gypsum plaster.

Effect of the Magnetized Water Supplementation on Lymphocyte DNA Damage in Mice Treated with Diethylnitrosamine (Diethyl Nitrosamine (DEN) 처리 실험동물에 있어 기간에 따른 자화육각수의 임파구 DNA 손상 개선효과)

  • Lee, Hye-Jin;Jo, Hye-Ryun;Jeon, Eun-Jae;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.43 no.6
    • /
    • pp.570-577
    • /
    • 2010
  • Water gets magnetically charged when it is contacted with a magnet. Although magnetic water products have been promoted since the 1930's, they have received very little recognition due to questionable effectiveness. Diethylnitrosamine (DEN) is a widely occurring nitrosamine that is one of the most important environmental carcinogens primarily inducing tumors of liver. In this study, the effect of magnetized water supplementation on lymphocyte DNA damage in ICR mice treated with DEN was evaluated using the Comet assay. Mice were divided into 3 groups: control, DEN, and DEN + magnetized water group. Fifteen mice were maintained in each group for the entire experimental period of 6, 12 and 18 weeks. Five mice in each group were sacrificed at 6, 12, and 18th weeks, followed by the Comet assay using the blood obtained from heart puncture of the mice. The level of lymphocyte DNA damage reflected by tail moment and other DNA damage indices of tail DNA (%) or tail length of the magnetized water group were significantly decreased after the 6th, 12th and 18th weeks of supplementation compared with the positive control, the DEN group. The relative DNA damage of the magnetized water groups compared to the DEN control group after 6th, 12th, and 18th weeks of supplementation were 42.2%, 40.8%, and 32.9% for DNA in tail, 31.2%, 32.6%, and 21.3% for tail length, and 33.8%, 33.8%, and 24.6% for tail moment, respectively. This is the first report demonstrating that magnetized water may be involved in the lowering effect of the DNA damage in DEN-treated ICR mice. This result suggests that the magnetized water might have minimized the DNA damage by improving the antioxidant status of the mice. However, further studies are needed to characterize the condition of the magnetization and examine the long-term effect of the water product.

Effects of Magnetized Medium on In Vitro Maturation of Porcine Cumulus Cell-Oocyte Complexes

  • Kim, Yun-Jung;Lee, Sang-Hee;Jung, Soo-Jung;Park, Choon-Keun
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • The objective of this study was to study the effect of magnetized water on porcine cumulus cell-oocyte complexes (COCs). Oocytes obtained from female pig were cultured in a medium magnetized at 0, 2000, 4000, and 6000 Gauss (G) for 5 minutes using the neodymium magnet. Subsequently, intracellular hydrogen peroxide ($H_2O_2$) concentration, glutathione (GSH) activity, oocyte membrane integrity, anti-apoptosis factor Bcl-xL expression, and nuclear maturation were analyzed. The intracellular $H_2O_2$ levels in COCs cultured for 44 hours were not significantly different among the variously magnetized samples. However, GSH activity were significantly higher in the magnetized samples compared to the 0 G sample. The Bcl-xL mRNA expression in COCs cultured for 44 hours was higher in the 4000 G sample than other treatment groups. Membrane damage in COCs cultured for 22 and 44 hours was significantly lower in 4000 G group than control group. On the other hand, nuclear stages as maturation indicator significantly increased in 2000, 4000, and 6000 G groups compared to 0 G group. These results indicate that incubation of porcine oocytes and cumulus cells in magnetized medium improves intracellular GSH levels, membrane integrity and nuclear maturation, and inhibits apoptosis in vitro.

자화수에서 염류의 용해속도 변화와 자화수에 의한 NaCl, KCl 및 석고의 결정화 양상에 대한 연구

  • Jeon, Sang Il;Kim, Dong Ryul;Lee, Suk Keun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.116-120
    • /
    • 2001
  • In order to know the physicochemical properties of magnetized water, the experimental methods of column assay, crystalization of saltsand gypsom have been explored to elucidate the effects of magnetized water on the solubility speed of salts, crystal pattern from salt squeous solutions, and gypsom crystal pattern, respectively. In the column assay for salt solubility the magnetized water showed the decreased initial solubility speed of NaCl and slightly increased initial solubility spped of KCI, however, the maximum solugilities of NaCl and KCI in the magnetized aster were almost same in the double distilled water, respectively. The column assay also indicated that the magnetized water showed the decreased initial solubility speed of urea (CH$_4$N$_2$O), sodium citrate (HOC(CO$_2$Na)-(CH$_2$CO$_2$Na)$_2$-2H$_2$O) and (NH$_4$)$_2$compared to the double distilled water, while slightly increased solubility speed of glycine (NH$_2$CH$_2$COOH), boric acid (H$_3$BO$_3$), MgSO$_4$. Crystalization of 1% or 5% salt aqueous solutions by rapid evaporation disclosed that the magnetized water produced more condensed and bigger crystal structure than the control water. The pattern of gypsom crystal formation also indicated that the magntized water enhanced the crystal formation in the hydration reaction of gypsom plaster compared to the double distilled water. Taken together, it was presumed that the magnetized water showed the different physicochemical properties in the interaction with various salts, especially showed the contrast results between NaCl and KCI.

  • PDF

Storage of Bull and Boar Semen: Novel Concepts Derived Using Magnetized Water and Antioxidants

  • Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Artificial insemination technique has been contributed immensely for production of livestock worldwide as a critical assisted reproductive technique to preserve and propagate excellent genes in domestic animal industry. In the past decade, methods for semen preservation have been improved mostly in liquid preservation method for boar semen and freezing method for bull semen. Among many factors affecting semen quality during preservation, reactive oxygen species, produced by aerobic respiration in sperm for survival and motility, are unfavorable to sperm physiology. In mammalian cell as well as in the sperm, antioxidant system plays a role in degradation of reactive oxygen species. Magnetized water forms smaller stabilizing water clusters, resulting in high absorption and permeability of the cell for water, implicating its application for semen preservation. Therefore, this review focuses on preservation methods of boar and bull semen with respect to improvement of extender and reduction of reactive oxygen species by using magnetized water and supplementation of antioxidants.

Study on the Critical Micelle Concentration Changes of Surfactants in Magnetized Water (자화수에서 계면활성제 임계미셀농도 변화에 관한 연구)

  • Lee, Sung-Hyun;Lee, Suk-Keun;Jeon, Sang-Il
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • The magnetized water is known to have a unique pattern of hydrogen bond between water molecules, thereby producing different physicochemical properties from the ordinary water. We have examined the effect of magnetized water on the change of critical micelle concentrations (CMC) of some surfactants. The CMC changes of SDS (sodium dodecyl sulfate) and CTAB (cetyltrimethylammonium bromide) dissolved in the magnetized water have been determined by the conductivity measurement at $25\;{^{\circ}C}$ and that of SDS, CTAB and Pluronic F-68 have also been examined by the surface tension method at $25\;{^{\circ}C}$. The CMC variation of SDS was examined by ITC (Isothermal Titration Calorimeter) at $25\;{^{\circ}C}$. The CMC of SDS, CTAB, and Pluronic F-68 are more decreased in the magnetized water, SDS is about $2.7{\sim}6.5$25 %, CTAB is about $2.3{\sim}3.0$%, and Pluronic F-68 is about 24.2 %, than in the control water.

Effects of Magnetized Water on Callus Formation and Plant Regeneration in Rice Anther Culture (벼 약배양에서 자화수가 캘러스 유기 및 식물체 재분화에 미치는 영향)

  • 조은기;권순종;서득용;최동진;최부술;김칠용;손재근;김달웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.650-655
    • /
    • 1996
  • In order to investigate the effects of added magnetized water on the callus induction and plant regeneration in rice, 700G(G=Gauss) magnetized water were used. The callus in-duction and plant regeneration of rice in magnetized water treatment are different from the callus induction and plant regeneration in ionic water treatment. The rates of callus induction in magnetized water media were 27.3% in solid media and 15.4% in liquid which were compared to that of callus induction in the ionic water media 21 and 13.3%. Also plant regeneration frequency in the magnetic water media is 5.4% better than that of the ionic water media. And dissolved oxgen amount of magnetic culture media is from 0.1 ppm to 0.9 ppm more than that of ionic culture media. The pH value was increased with rising of water temperature, and the magnetic water was effected at increasing of pH value.

  • PDF

Effect of change intensity fields of magnetized water on fresh and hardened characteristics of concrete

  • Ali S. Ahmed;Mohamed M.Y. Elshikh;Mosbeh R. Kaloop;Jong Wan Hu;Walid E. Elemam
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.97-110
    • /
    • 2023
  • This study investigates experimentally the impact of magnetized water (MW) on the fresh and hardened characteristics of concrete. Five types of MW are produced using magnetic fields of 1.4 and 1.6 Tesla for treating water with 100, 150, and 250 cycles. The concrete properties are assessed using the slump test, compressive strength test, scanning electron microscopy (SEM) analysis, energy dispersive X-ray analysis (EDX), and Fourier transform infrared spectrophotometry (FTIR). Furthermore, the chemical-physical characteristics of tap water (TW) and MW are evaluated. The results showed the magnetic field intensity has a significant impact on the magnetization effect; the best magnetizing conditions were found when TW was exposed successively to magnetic fields of 1.6 T and 1.4 T for 150 cycles. In addition, 150 MW cycles can be used to improve the compressive strength and workability of concrete by 40% and 17%, respectively. pH, total dissolved solids, and electrical conductivity improved by 15%, 17%, and 7%, respectively, when using MW. Additionally, MW can be used to enhance cement hydration chemical processes and made concrete's structure denser.