Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.3.241

Effects of Magnetized Medium on In Vitro Maturation of Porcine Cumulus Cell-Oocyte Complexes  

Kim, Yun-Jung (College of Animal Life Sciences, Kangwon National University)
Lee, Sang-Hee (College of Animal Life Sciences, Kangwon National University)
Jung, Soo-Jung (Financial Accounting, Seoul National University)
Park, Choon-Keun (College of Animal Life Sciences, Kangwon National University)
Publication Information
Abstract
The objective of this study was to study the effect of magnetized water on porcine cumulus cell-oocyte complexes (COCs). Oocytes obtained from female pig were cultured in a medium magnetized at 0, 2000, 4000, and 6000 Gauss (G) for 5 minutes using the neodymium magnet. Subsequently, intracellular hydrogen peroxide ($H_2O_2$) concentration, glutathione (GSH) activity, oocyte membrane integrity, anti-apoptosis factor Bcl-xL expression, and nuclear maturation were analyzed. The intracellular $H_2O_2$ levels in COCs cultured for 44 hours were not significantly different among the variously magnetized samples. However, GSH activity were significantly higher in the magnetized samples compared to the 0 G sample. The Bcl-xL mRNA expression in COCs cultured for 44 hours was higher in the 4000 G sample than other treatment groups. Membrane damage in COCs cultured for 22 and 44 hours was significantly lower in 4000 G group than control group. On the other hand, nuclear stages as maturation indicator significantly increased in 2000, 4000, and 6000 G groups compared to 0 G group. These results indicate that incubation of porcine oocytes and cumulus cells in magnetized medium improves intracellular GSH levels, membrane integrity and nuclear maturation, and inhibits apoptosis in vitro.
Keywords
magnetized water; cumulus cell-oocyte complexes; nuclear maturation; in vitro maturation; pigs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. S. Hideki Tatemoto, and M. Norio. Biol. Reprod. 63, 805 (2000).   DOI   ScienceOn
2 S. Luperchio, S. Tamir, and S. R. Tannenbaum, Free Radical Biol. Med. 21, 513 (1996).   DOI   ScienceOn
3 C. Matas, P. Coy, R. Romar, M. Marco, J. Gadea, and S. Ruiz, Reproduction 125, 133 (2003).   DOI   ScienceOn
4 A. M. G. Mantovani, C. Madeddu, E. L. Mura, E. Massa, G. Gramignano, M. R. Lusso, V. Murgia, P. Camboni, and L. Ferreli, J. Cell Mol. Med. 6, 570 (2002).   DOI   ScienceOn
5 M. G. Marques, C. Nicacio, V. P. de Oliveira, A. B. Nascimento, H. V. Caetano, C. M. Mendes, M. R. Mello, M. P. Milazzotto, M. E. Assumpcao, and J. A. Visintin, Anim. Reprod. Sci. 97, 375 (2001).
6 P. Wongsrikeao, Y. Kaneshige, R. Ooki, M. Taniguchi, B. Agung, M. Nii, and T. Otoi, Reprod. Domest. Anim. 40, 166 (2005).   DOI   ScienceOn
7 L. R. Abeydeera and B. N. Day, Biol. Reprod. 57, 729 (1997).   DOI   ScienceOn
8 P. Guerin, S. El Mouatassim, and Y. Menezo, Hum. Reprod. Update. 7, 175 (2001).   DOI   ScienceOn
9 L. R. Abeydeera, W. H. Wang, T. C. Cantley, R. S. Prather, and B. N. Day, Theriogenology 50, 747 (1998).   DOI   ScienceOn
10 D. G. de Matos and C. C. Furnus, Theriogenology 53, 761 (2000).   DOI   ScienceOn
11 J. Y. You, J. Y. Kim, J. M. Lim, and E. S. Lee, Theriogenology 74, 777 (2010).   DOI   ScienceOn
12 C. C. Furnus, D. G. de Matos, and D. F. Moses, Mol. Reprod. Dev. 51, 76 (1998).   DOI
13 C. S. Gardiner and D. J. Reed, Biol. Reprod. 51, 1307 (1994).   DOI   ScienceOn
14 W. Sha, B. Z. Xu, M. Li, D. Liu, H. L. Feng, and Q. Y. Sun, Fertil. Steril. 93, 1650 (2010).   DOI   ScienceOn
15 S. Mufarrei, H. A. Batshan, M. I. Shalaby, and T. M. Shafey, Poult. Sci. 4, 96 (2005).   DOI
16 C. F. Martino and P. R. Castello, PLoS One 6, e22753 (2011).   DOI
17 N. Viet Linh, T. Q. Dang-Nguyen, B. X. Nguyen, N. Manabe, and T. Nagai, J. Reprod. Dev. 55, 594 (2009).   DOI   ScienceOn
18 J. Zhu, E. E. Telfer, J. Fletcher, A. Springbett, J. R. Dobrinsky, P. A. De Sousa, and I. Wilmut, Biol. Reprod. 66, 635 (2002).   DOI   ScienceOn
19 S. Landolfo, H. Politi, D. Angelozzi, and I. Mannazzu, Biochim. Biophys. Acta 1780, 892 (2008).   DOI   ScienceOn
20 F. Carlos and P. R. C. Martion, PlLoS ONE 6, e22753 (2011).   DOI
21 A. H. Hashish, M. A. El-Missiry, H. I. Abdelkader, and R. H. Abou-Saleh, Ecotoxicol. Environ. Saf. 71, 895 (2008).   DOI   ScienceOn
22 D. Biswas and S. H. Hyun, Theriogenology 76, 153 (2011).   DOI   ScienceOn
23 J. Fujii, Y. Iuchi, and F. Okada, Reprod. Biol. Endocrinol. 3, 43 (2005).   DOI   ScienceOn
24 M. de Nicola, S. Cordisco, C. Cerella, M. C. Albertini, M. D'Alessio, A. Accorsi, A. Bergamaschi, A. Magrini, and L. Ghibelli, Ann. N. Y. Acad. Sci. 1090, 59 (2006).   DOI   ScienceOn
25 J. J. Eppig. Dev. Biol. 89, 268 (1982).   DOI   ScienceOn
26 N. B. Gilula, M. L. Epstein, and W. H. Beers, J. Cell Biol. 78, 58 (1978).   DOI   ScienceOn
27 M. Hozayn and A. M. S. A. Qados, Agric. Biol. J. North Am. 1, 677 (2010).
28 M. R. Blano, S. Demyda, M. M. Mereno, and E. Genero, Biotech. Mol. Biol. Review 6, 155 (2001).
29 H. Tamura, A. Takasaki, T. Taketani, M. Tanabe, F. Kizuka, L. Lee, I. Tamura, R. Maekawa, H. Aasada, Y. Yamagata, and N. Sugino, J. Ovarian Res. 5, 5 (2012).   DOI   ScienceOn
30 C. M. Combelles, S. Gupta, and A. Agarwal, Reprod. Biomed. Online. 18, 864 (2009).   DOI   ScienceOn
31 S. D. Perreault, R. R. Barbee, and V. L. Slott, Dev. Biol. 125, 181 (1988).   DOI   ScienceOn
32 T. Nagai, Theriogenology 55, 1291 (2001).   DOI   ScienceOn
33 P. J. Booth, P. Holm, and H. Callesen, Theriogenology. 63, 2040 (2005).   DOI   ScienceOn
34 K. A. Zuelke, S. C. Jeffay, R. M. Zucker, and S. D. Perreault. Mol. Reprod. Dev. 64, 106 (2003).   DOI   ScienceOn
35 C. Fanelli, S. Coppola, R. Barone, C. Colussi, G. Gualandi, P. Volpe, and L. Ghibelli, FASEB J. 13, 95 (1999).