• Title/Summary/Keyword: magnetic traction

Search Result 85, Processing Time 0.031 seconds

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.369-386
    • /
    • 2016
  • In this work, the two-dimensional generalized magneto-thermoelastic problem of a fiber-reinforced anisotropic material is investigated under Green and Naghdi theory of type III. The solution will be obtained for a certain model when the half space subjected to ramp-type heating and traction free surface. Laplace and exponential Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue approach. The inverses of Fourier transforms are obtained analytically. The results have been verified numerically and are represented graphically. Comparisons are made with the results predicted by the presence and absence of reinforcement and magnetic field.

Characteristic Comparison of Linear Thrust Forces for Magnet Wheels (자기 차륜의 선형 추력 특성 비교)

  • Shim, Ki-Bon;Jung, Kwang-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1353-1356
    • /
    • 2009
  • As a method obtaining linear thrust force for the magnet wheel producing a strong traction torque, the concept of magnetic shield is suggested and compared with the existing approaches. Specially, as the magnet wheel, in which the permanent magnets rotate mechanically instead of ac driving to make traveling field, is physically similar with the rotary induction motor, there is a periodical force ripple in tangential direction as well as normal direction. But, the force ripple can be suppressed from a shape change of the shield plate. Namely, the change brings out a change of entry and exit effect of the circumferential field for the magnet wheel. The feasibility of the shield concept is verified from simulation and experiment.

Development of the High Performance Inverter(300KVA) for Urban Transit Magnetic levitation Vehicles (자기부상열차용 추진용 인버터(300KVA)에 관한 연구)

  • Kim, Suk-Ki;Cho, Sung-Jin;Chung, Jin-Heung;Kim, Bong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.626-629
    • /
    • 1997
  • The urban transit propelled by single sided linear induction motor(SLIM) have been in stage for practical application. Also, the use of the linear induction motor in traction systems enables large forces to be achieved without friction between wheels and rails. In this paper we discuss the linear induction motor (LIM) drive system (300KVA) for magnetic levitation vehicles.

  • PDF

System Design Considering the required performance of the Levitation Control in Maglev (자기부상열차의 부상제어 요구 성능을 고려한 시스템의 설계)

  • Jo, Jeong-Min;Lee, Jong-Min;Kang, Byung-Gwan;Park, Sung-Ho;Kim, Cheol-Ho;Choi, Jong-Mook;Kim, Kuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1024-1031
    • /
    • 2008
  • The performance of magnetic levitation controller is affected from not only levitation control algorithm but also the interaction between compositing system, so it is important to design maglev system considering the character of magnetic levitation controller in order to get the required performance of Maglev. The factors affecting the levitation controller of maglev are the dynamics of levitation magnet, the carrying weight of the overall system, the normal force and lateral force of traction motor and rail condition. In this paper the interaction between magnet and vehicle weight is analysed on side of stability of levitation controller in order to get the required performance of levitation controller.

  • PDF

The Surgical Management of Traumatic C6-C7 Spondyloptosis

  • Keskin, Fatih;Kalkan, Erdal;Erdi, Fatih
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.1
    • /
    • pp.49-51
    • /
    • 2013
  • A case of traumatic spondyloptosis of the cervical spine at the C6-C7 level is reported. The patient was treated succesfully with a anterior-posterior combined approach and decompression. The patient had good neurological outcome after surgery. A-51-year-old female patient was transported to our hospital's emergency department after a vehicle accident. The patient was quadriparetic (Asia D, MRC power 4/5) with severe neck pain. Plain radiographs, computerize tomography and spinal magnetic resonance imaging (MRI) showed C6-7 spondyloptosis and C5, C6 posterior element fractures. Gardner-Wells skeleton traction was applied. Spinal alignment was reachived by traction and dislocation was decreased to a grade 1 spondylolisthesis. Then the patient was firstly operated by anterior approach. Anterior stabilization and fusion was firstly achieved. Seven days after first operation the patient was operated by a posterior approach. The posterior stabilization and fusion was achieved. Postoperative lateral X-rays and three-dimensional computed tomography showed the physiological realignment and the correct screw placements. The patient's quadriparesis was improved significantly. Subaxial cervical spondyloptosis is a relatively rare clinical entity. In this report we present a summary of the clinical presentation, the surgical technique and outcome of this rarely seen spinal disorder.

A Study on the Characteristics Analysis According to the Permanent Magnet Segmentation Change to IPMSM for Urban Railway Vehicle (도시철도차량용 IPMSM의 Magnet Segment 변화에 따른 특성 분석에 관한 연구)

  • Jeong, Geochul;Park, Chan-Bae;Jeong, Taechul;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1486-1492
    • /
    • 2015
  • The following study carried out the characteristic analysis based on the magnet segment of Interior Permanent Magnet Synchronous Motor(IPMSM) for the urban railway vehicles. IPMSM affects the electromagnetic characteristics through the change in magnetic flux based on the rotor structure, and significantly influences the structural features through the change of pressure. Therefore, satisfied by the demanded traction force of the IPMSM, magnet segment derived three different model types. The 1-segment PM model consisted an undivided permanent magnet. The 2-Bridge model consisted a divided permanent magnet with the application of Bridge. The 3-Bridge model consisted additional dividing with one more Bridge applied. The electromagnetic characteristics of the three models were compared and analyzed along with the structural features regarding the scattering of permanent magnet based on strong centrifugal force from the rotation of the rotor at high speed. In conclusion, the final model with electromagnetic characteristics and structural features most suitable of IPMSM for the urban railway vehicles was derived, and the effectiveness was verified through the characteristic experiments after the production of the derived model.

Development of BLDC Motor for HEV Engine Cooling and Battery Cooling System (하이브리드 차량의 엔진 및 배터리 냉각팬 구동용 BLDC모터 개발)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Hybrid Electric Vehicles(HEVs) have seriously come into prevalence recently as car manufacturers and consumers have become more aware of the environmental and economic problems of conventional vehicles. For the alternative power-train and battery cooling systems in HEVs, an effective thermal management system is required, and many automakers are interested in using Brushless DC(BLDC) motors for cooling fans for the overall traction unit's performance and energy saving capability. This paper presents the development status of BLDC motors as major parts of the power-train, i.e. the engine cooling and battery cooling fans of HEVs. A design that uses BLDC motors for the power-train and each battery cooling fan, is successfully implemented through using electro-magnetic analysis, and prototype BLDC motors are examined. As experimental results, the BLDC motors achieved an efficiency of 85% as engine cooling fans and 72% as a battery thermal management fan motor. The electric cogging noise is significantly reduced by changing the skew of the slot pitch angle and optimizing the magnetic shape.

Analysis and measurement of low frequency magnetic field according to internal position of electric railway train (전기철도차량 객실 내부 위치에 따른 극저주파 자계 측정 및 분석)

  • Jang, Dong-Uk;Han, Moon-Seob
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.489-494
    • /
    • 2008
  • The measurement of magnetic field is performed about DC and AC magnetic field in electric railway line. The test point is cap, on the converter/inverter box, on the traction motor and on the SIV, the height of measurement is bottom and 60 cm height. In case of AC magnetic field, the selected specific frequency is measured on the converter/inverter box. The AC magnetic field is checked and analysis through BNC output, DAQ cad and notebook PC.

  • PDF

Core-loss reduction on PM for IPMSM with concentrated winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1832-1837
    • /
    • 2011
  • This paper presents the optimal permanent magnet shape on the rotor of an interior permanent magnet motor to reduce the core losses and improve the performance. As permanent magnet has conductivity inherently, it causes huge amount of eddy current losses by the slot harmonics with concentrated winding. This loss is roughly 100 times larger than that of distributed winding in high speed operation and it cannot be ignored, especially on traction motors. Each eddy current loss on permanent magnet has been investigated in detail by using FEM(Finite Element Method) instead of EMCNM(Equivalent Magnetic Circuit Network Method) in order to consider saturation and non-linear magnetic property. Simulation-based DOE(Design Of Experiment) is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, the core loss reduction on the proposed shape of the permanent magnet is verified by FEM.

  • PDF