• Title/Summary/Keyword: magnetic structure

Search Result 2,552, Processing Time 0.032 seconds

Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.21-31
    • /
    • 2018
  • In this work, the dynamic stability of carbon nanotubes (CNTs) reinforced composite pipes conveying pulsating fluid flow is investigated. The pipe is surrounded by viscoelastic medium containing spring, shear and damper coefficients. Due to the existence of CNTs, the pipe is subjected to a 2D magnetic field. The radial induced force by pulsating fluid is obtained by the Navier-Stokes equation. The equivalent characteristics of the nanocomposite structure are calculated using Mori-Tanaka model. Based on first order shear deformation theory (FSDT) or Mindlin theory, energy method and Hamilton's principle, the motion equations are derived. Using harmonic differential quadrature method (HDQM) in conjunction with the Bolotin's method, the dynamic instability region (DIR) of the system is calculated. The effects of different parameters such as volume fraction of CNTs, magnetic field, boundary conditions, fluid velocity and geometrical parameters of pipe are shown on the DIR of the structure. Results show that with increasing volume fraction of CNTs, the DIR shifts to the higher frequency. In addition, the DIR of the structure will be happened at lower excitation frequencies with increasing the fluid velocity.

Analysis of Symmetric and Periodic Open Boundary Problem by Coupling of FEM and Fourier Series

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.130-134
    • /
    • 2013
  • Most electrical machines like motor, generator and transformer are symmetric in terms of magnetic field distribution and mechanical structure. In order to analyze these problems effectively, many coupling techniques have been introduced. This paper deals with a coupling scheme for open boundary problem of symmetric and periodic structure. It couples an analytical solution of Fourier series expansion with the standard finite element method. The analytical solution is derived for the magnetic field in the outside of the boundary, and the finite element method is for the magnetic field in the inside with source current and magnetic materials. The main advantage of the proposed method is that it retains sparsity and symmetry of system matrix like the standard FEM and it can also be easily applied to symmetric and periodic problems. Also, unknowns of finite elements at the boundary are coupled with Fourier series coefficients. The boundary conditions are used to derive a coupled system equation expressed in matrix form. The proposed algorithm is validated using a test model of a bush bar for the power supply. And the each result is compared with analytical solution respectively.