• Title/Summary/Keyword: magnetic sensing

Search Result 280, Processing Time 0.029 seconds

A Study on Development of Metal Detector on Belt Conveyor in Material Plant (원료수송용 벨트컨베이어의 철편인식 장치 개발에 관한 연구)

  • Yoo, Jae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.714-716
    • /
    • 1997
  • In order to prevent the belt from being damaged by metal pieces, we developed multicoil-type metal detection system. This detects the presence of belt clips and position of metal pieces in ores being transported on conveyor belt. In this research, our coil sensor of multicoil-type metal detection system is divided into two parts, exciting part (transmitter coil) and sensing part composed of two receiver coils. Each receiver coil has several coils in the direction of belt width. Multicoil-type metal detection system is operated by supplying a transmitter coil with electric power resources to generate magnetic field, and then the change of magnetic flux resulted from a metal piece on the conveyor be a is induced into sensing coils. We can prevent detector from failing to catch metal pieces due to high threshold level produced by steel belt clips and male the sensitivity of belt-width direction uniform by using multicoil-type metal detection system. Besides, this developed system can recognize precise position and size of metal piece. The experiments shows that our multicoil-type metal detection system has better performances than the conventional metal piece detector.

  • PDF

Development of Auto-Tuning Geomagnetic Compass (자동 자기 왜곡보정 방위센서 개발)

  • Kim, Sang-Cheol;Lee, Yong-Beom;Han, Kil-Su;Im, Dong-Hyeok;Choi, Hong-Gi;Park, Woo-Pung;Lee, Woon-Yong
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-62
    • /
    • 2008
  • The need for position information in agriculture is gradually increasing for precise control farm vehicle and effective manage farm land. Though geomagnetic sensor has a lot of merits in estimating heading angle of vehicle because of low costs and sensing ability of magnetic north, it is easy that sensor outputs are distorted in electro magnetic field environment. This study was conducted to develop geomagnetic compass which could be available in measuring relative position from reference point correcting output distorted by external electro magnetic field in a small scale field. Magnetic inducing sensor (PNI's Vector2X) which wound enamel coated copper coil on ferrite core in order to measure and correct earth magnetic field. Magnetic azimuth was corrected using the algorithm which estimated amount of magnetic distortion from the difference between each outputs of magnetic sensors that located on the cross shaped base. Developed auto-tuning magnetic sensor was showed less then 5% as bearing accuracy in the strong magnetic field.

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

Sensing Performance Evaluation under Various Environment Condition of Stroke Sensing Cylinder using Hall Sensor (자기센서를 이용한 위치검출 실린더의 환경변화에 따른 성능평가)

  • Kim, Sung-Hyun;Bae, Jong-Il;Lee, Min-Cheol;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.524-526
    • /
    • 1997
  • We have developed a part of hydraulic stroke sensing cylinder using magnetic sensor that can detect each position under severe construction fields. In this paper, for evaluating the developed cylinder under various environment condition, temperature control systems and two hydraulic systems to be coupled consist of. The results show that the developed cylinder has good performance under the various environment condition.

  • PDF

Evluation of Sensing Performance of Stroke Sensing Cylinder under Various Temperature Conditions (자기센서를 이용한 위치검출 실린더의 온도변화에 따른 성능평가)

  • 김성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.215-219
    • /
    • 1996
  • We developed a part of hydraulic stroke sensing cylinder for te purpose of position controlbyusing magnetic sensor and evaluated variously its performance its performance. In this paper, for the evaluation of the developed cylinder under various temperature change, thermal control systems are designed and controlled. It is composed of an heater case, temperature sensor, and interface circuits which included SCR(silicon controlled rectifier) for the control of the voltage's phase. To obtain various temperature conditions, the thermal systems are controlled by using Ziegler-Nichols PED tuning method. The thermalcontrol systems are used to experiment to evaluate whether the developed cylinder can obtain a stable output signal for detecting a stroke of the cylinder under the controlled temperature condition.

  • PDF

Projectile's Velocity Effect for Voltage Induced at Sensing Coil for Applying to Air Bursting Munition

  • Ryu, Kwon-Sang;Shin, Jun-Goo;Jung, Kyu-Chae;Son, Derac.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • We designed a model composed of a ring type magnet, a yoke, and a sensing coil embedded in a projectile for simulating the muzzle velocity. The muzzle velocity was obtained from the master curve for the induced voltage at sensing coil and the velocity as the projectile pass through the magnetic field. The induced voltage and the projectile's velocity are fitted by the $2^{nd}$ order polynomial. The skin effect difference between projectiles which consist of aluminum-aluminum and aluminum-steel was small. The projectile will surely be burst at the pre-determined target area using the flight time and the projectile muzzle velocity calculated from the voltage induced at the sensing coil on the projectile.

A New Reference Cell for 1T-1MTJ MRAM

  • Lee, S.Y.;Kim, H.J.;Lee, S.J.;Shin, H.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.110-116
    • /
    • 2004
  • We propose a novel sensing scheme, which operates by sensing the difference in voltage between a memory cell and a reference cell for a magneto-resistive random access memory (MRAM). A new midpoint-reference generation circuit is adopted for the reference cell to improve the sensing margin and to guarantee correct operation of sensing circuit for wide range of tunnel magneto resistance (TMR) voltages. In this scheme, the output voltage of the reference cell becomes nearly the midpoint between the cell voltages of high and low states even if the voltage across the magnetic tunnel junction (MTJ) varies.