• Title/Summary/Keyword: magnetic rubber

Search Result 85, Processing Time 0.027 seconds

Recovery Process for the Recycling of Waste Carbon Black

  • Lee, Sungoh;Nampyo Kook;Tam Tran;Bangsup Shin;Kim, Myongjun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.215-219
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A lot of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurity content such as sulphur, iron, ash and etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3-5 times more expensive than oil-based carbon black because of its process difficulties and requires pollutant treatment. Hydrophilic carbon is normally used far conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc.. In these applications, hydrophilic carbon must maintain its high purity. In this study magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. As results, the ash, iron and sulphur content of product decreased to less than 0.01wt.%, 0.0lwt.% and 0.3wt.% respectively, and the surface area of product was about 930 $m^2$/g.

  • PDF

Characterization of PMMA/MWNT Composites Fabricated by a Twin Screw Extruder (이축 압출기를 이용하여 제조된 PMMA/MWNT 복합체의 특성 분석)

  • Woo, Jong-Seok;Lee, Geon-Woong;Kye, Hyoung-San;Shin, Kyung-Chul;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • MWNTs have been widely investigated due to unique properties of such as good electrical conductivity and thermal stability in polymer composites industries. This paper established the procedure to fabricate PMMA/MWNT composites by a modular intermeshing co-rotating twin screw extruder with L/D ratio of 42. The electrical properties of PMMA/MWNT composites with different content of MWNT have been investigated. A sheet resistance percolation was observed at 4 wt% of MWNT for the melt processed composites. Sheet resistance of PMMA/MWNT composite film containing 4 wt% of MWNT was nearby $10^4{\Omega}/sq$ and this shows the possibility of potential application to EMI (Electronic Magnetic Interference) shielding materials. The characteristics of composites were analyzed by TGA, DSC, and SEM. In addition, MFI (Melt Flow Index) has been measured to analyze the rheological property.

Comparison of Vinyl Acetate Contents of Poly(Ethylene-co-Vinyl Acetate) Analyzed by IR, NMR, and TGA

  • Kim, Eunha;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.18-23
    • /
    • 2015
  • Vinyl acetate (VA) contents of poly(ethylene-co-vinyl acetate) (EVA) analyzed by infrared spectroscopy (IR), nuclear magnetic spectroscopy (NMR), and thermogravimetric analysis (TGA) were compared. Four grade EVAs supplied by Aldrich Co. and four grade EVAs manufactured by DuPont Co. were used. For IR analysis, VA contents were determined using calibration curve (absorbance ratio of $1739cm^{-1}/2922cm^{-1}$ or $609cm^{-1}/1464cm^{-1}$) of reference EVAs. Correlation coefficients of the calibration curves were not sufficiently high ($r^2{\leq}0.96$). For NMR analysis, VA contents were determined using peaks of $CH_3$, $CH_2$, and CH. VA contents determined by NMR analysis were less than those marked by suppliers more than 10%. For TGA, VA contents were determined using weight loss through deacetylation. VA contents determined by TGA were slightly different with those marked by suppliers. Difference in the VA contents determined by different analytical methods was discussed, and difference in the analytical results according to the EVA suppliers was also examined.

A Modeling of Impact Dynamics and its Application to Impact Force Prediction

  • Ahn Kil-Young;Ryu Bong-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.422-428
    • /
    • 2005
  • In this paper, the contact force between two colliding bodies is modeled by using Hertz's force-displacement law and nonlinear damping function. In order to verify the appropriateness of the proposed contact force model, the drop type impact test is carried out for different impact velocities and different materials of the impacting body, such as rubber, plastic and steel. In the drop type impact experiment, six photo interrupters in series close to the collision location are installed to measure the velocity before impact more accurately. The characteristics of contact force model are investigated through experiments. The parameters of the contact force model are estimated using the optimization technique. Finally the estimated parameters are used to predict the impact force between two colliding bodies in opening action of the magnetic contactor, a kind of switch mechanism for switching electric circuits.

Synthesis of PSSQs Siloxane Resin Polymer Using Monomolecular Fluoro Silane

  • Bae, Jae Young;Mun, Han Jun;Kim, Tae Ho;Park, Hyun Ho
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.103-107
    • /
    • 2020
  • Herein, resin-formed polysilsesquioxanes (PSSQs) were synthesized using monomolecular fluoro silane as a precursor. The synthesized PSSQs exhibited anti-smudge performance and were used as coating liquid. Two structures were acquired by controlling the amount of the silane precursor and the K2CO3 catalyst; these materials were used to prepare the anti-smudge coating liquid solution. The synthesized product was analyzed by various methods such as nuclear magnetic resonance spectroscopy, X-ray diffraction analysis, gel permeation chromatography, and water contact angle measurement. The results confirmed that the as-synthesized PSSQs exhibited the ladder structure and had a molecular weight of 5,117 g/mol and water contact angle of 102.31°.

The Evaluation of Shock Absorption Performance of Magneto-Rheological Elastomer Through the Drop Impact Test (낙하 충격 실험을 통한 자기유변탄성체의 충격 흡수 성능 평가)

  • Joeng, Kyeong Sik;Lee, Chul Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.92-93
    • /
    • 2013
  • In this study, Shock Absorption performance of Magneto-rheological elastomer(MRE) is identified through the drop impact test. Magneto-rheological materials are divided into two groups by MR fluid in fluid state and MR elastomer in solid state like rubber. The stiffness characteristics of Magneto-rheological material can be changed as magnetic field is applied. The impact loads in MR elastomer were measured under weight of impactor. Experiment results are shown through the experiments to confirm the effect of shock absorption of MR elastomer. Thus, the MR elastomer can be applied to shock absorber used in area that shock occurs.

  • PDF

Synthesis of Terpolymers and Dependence of Their Characteristics on Types and Content of High α-olefin

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Novel flexible terpolymers with a reactive moiety were synthesized by coordination polymerization with a metallocene catalyst and a cocatalyst system. C2-symmetric rac-Et(Ind)2ZrCl2 and tri-iso-butylaluminum/dimethylanilinium tetrakis (pentafluorophenyl) borate were employed as the catalyst and cocatalyst, respectively. We synthesized reactive terpolymers consisting of ethylene, a high α-olefin content (1-hexene, 1-octene, 1-decene, and 1-dodecene), and divinylbenzene. The structure and composition of the terpolymers were characterized by 1H-nuclear magnetic resonance analysis. The catalytic activity, polymer yield, molecular weight, and molecular weight distribution were measured as functions of the chain length and high content of α-olefins. Furthermore, the thermal properties and crystallinity of the terpolymers were determined by differential scanning calorimetry and wide-angle X-ray scattering.

Magnetic and Microwave Absorbing Properties of M-type Hexagonal Ferrites Substituted by Ru-Co(BaFe12-2xRuxCoxO19) (Ru-Co가 치환된 M-형 육방정 페라이트(BaFe12-2xRuxCoxO19)의 자기적 성질 및 전파흡수 특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.136-141
    • /
    • 2008
  • In this study, the magnetic(static and high-frequency) and microwave absorbing properties have been investigated in Ru-Co substituted M-hexaferrites($BaFe_{12-2x}Ru_xCo_xO_{19}$). The powders and sintered specimens were prepared by conventional ceramic processing technique. With the calcined powders, the composite specimens were prepared using the silicone rubber as a matrix material. The substitution ratio of Ru-Co to obtain in-plane magnetic anisotropy, thus having the minimum coercivity, is much smaller (about x=0.3) than the previously reported Ti-Co substituted specimen. Owing to this low substitution, the specimen has a large value of saturation magnetization($M_s$=65 emu/g). Ferromagnetic resonance behavior and microwave absorbing frequency band is strongly influnced by the coercvity which can be controlled by Ru-Co substitution ratio. It is found that the M-hexaferrites with planar magnetic anisotropy by doping Ru-Co in both sintered and composite form have superior microwave absorbing properties in GHz frequency range.

A Study on the Role of -SO3- Ions in the Dehydration Limit of Poly(styrene-co-styrenesulfonic acid) Membrane

  • Ko, Kwang-Hwan;Kim, Joon-Seop;Lee, Chang Hoon
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.180-186
    • /
    • 2017
  • In this work, the effect of low-temperature dehydration of a poly(styrene-co-styrenesulfonic acid) (PSSA) membrane was investigated by differential scanning calorimetry, fourier transform infrared spectroscopy (FT-IR), electron magnetic resonancespectroscopy (EMR), and $^1H$- and $^{13}C$ solid-state nuclear magnetic resonance spectroscopy. These analyses were performed at room temperature for powdered PSSA specimens with and without dehydration and the following key observations were made. First, FT-IR analysis showed that low-temperature dehydration not only transformed the [${SO_3}^-{\cdots}H^+$] ionic pair in the non-hydrated PSSA to an $SO_3H$ group, but also induced the formation of -C=C- double bonds in the dehydrated PSSA. Second, the ${-SO_3}^{\bullet}$ radical was unambiguously identified by EMR spectroscopy. Third, H-abstraction was detected by $^1H$ magic-angle spinning spectroscopy. Finally, an unexpected color shift from white for the non-hydrated PSSA to a yellowish brown for the dehydrated sample was observed. In order to explain these experimental results, it was proposed that the formation of the intermediate hydrogen ($H^{\bullet}$) or hydroxyl radical ($HO^{\bullet}$) species was initiated by the dehydration process. The sespecies attacked the $SO_3H$ group and the tertiary proton at the ${\alpha}-carbon$, resulting in the formation of $-SO^{\bullet}$ radicals and -C=C- double bonds, which correlated with the color shift in the dehydrated PSSA sample. The semechanisms are useful for understanding the simultaneous loss of an aromatic ring and -SO- groups in the PSSA fuel cell membrane.

Effect of Low-temperature Thermal Treatment on Degree of Crystallinity of a Low Density Polyethylene: $^{1}H$ Nuclear Magnetic Resonance Study (저밀도 폴리에틸렌의 결정화도에 대한 저온 열처리 효과: 수소 핵자기공명 연구)

  • Lee, Chang-Hoon;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.259-263
    • /
    • 2008
  • An effect of low-temperature long-term thermal degradation on a degree of crystallinity of a low density polyethylene (LDPE) was investigated by using $^1H$ solid state nuclear magnetic resonance (SSNMR). Firstly, the long-term thermal treatment makes a color of LDPE from white to pale yellow which is indicative of thermal oxidation. Secondly, it makes the $^{1}H$ NMR spin-spin and spin-lattice relaxation times ($T_1$) to be long. Lastly, the degree of crystallinity of the semicrystalline aged-LDPE also decreases with thermal treatment. Above all, the $T_1$ increase is envisaged to be due to either a decrease of the amorphous regions governing overall spin-lattice relaxation mechanism in LDPEs or a dynamically restricted motion of specific molecular motions by intermolecular hydrogen bonding or crosslinking. However, since the decrease of crystallinity implies an increase of amorphous regions by the thermal treatment, the former case is contrast to our results. Accordingly, we concluded that the latter effect is responsible for the $T_1$ increase.