• Title/Summary/Keyword: magnetic resonant coupling

Search Result 48, Processing Time 0.022 seconds

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Magnetic Field Analysis of Wireless Power Transfer via Magnetic Resonant Coupling or Electric Vehicle

  • Kesamaru, Katsumi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.83-87
    • /
    • 2014
  • This paper describes the magnetic field analysis of wireless power transfer via magnetic resonant coupling. The wireless power transfer system for supplying power to electric vehicle is developed. The parameters of coil transfer system are simulated by the finite element method (FEM). Therefore the coil structure of power transfer system can be accurately analyzed. This paper deals with 3kW wireless transfer system.

A Study on Transmission Efficiency of Wireless Power Induction and Resonant Charging Methodologies (무선 유도 및 공진 충전방식의 전송효율 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.747-750
    • /
    • 2019
  • Wearable devices have become practically indispensable to daily life and helped people track and manage fitness, health, and medical functions etc. As these wearable devices become smaller and more comfortable for the user, the demand for longer run time and charging ways presents new challenges for the power management engineer. Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smart phone to high power electric railroad and main electrical grid. There are two kinds of WPT methods: Inductive coupling and magnetic resonant coupling. The model using magnetic resonant coupling method is designed for a resonant frequency of 13.45 MHz. In this study, the hardware implementations of these two coupling methods are carried out, and the efficiencies are compared.

Omnidirectional Resonator in X-Y Plane Using a Crisscross Structure for Wireless Power Transfer

  • Kim, Donggeon;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Magnetic resonant coupling is more efficient than inductive coupling for transferring power wirelessly over a distance. However, a conventional resonant wireless power transfer (WPT) system requires a transmitter and receiver pair in exactly coaxial positions. We propose a resonator that can serve as an omnidirectional WPT system. A magnetic field will be generated by the current flowed through the transmitter. This magnetic field radiates omnidirectionally in the x-y plane because of the crisscross structure characteristic of the transmitter. The proposed resonator is demonstrated by using a single port. To check the received S21 and transfer efficiency, we moved the receiver around the transmitter at different distances (50-350 mm). As a result, the transmission efficiency is found to be 48%-54% at 200 mm.

Implementation of Effective Wireless Power Transmission Circuit for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.846-849
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that enables the power to transmit electromagnetic field to an electrical load without the use of wires. There are two kinds of magnetic resonant coupling and inductive coupling ways transmitting from the source to the output load. Compared with microwave method for energy transfer over a long distance, the magnetic resonance method has the advantages of reducing the barrier of electromagnetic wave and enhancing the efficiency of power transmission. In this paper, the wireless power transfer circuit having a resonant frequency of 13.45 MHz for the low power system is studied, and the hardware implementation is accomplished to measure the power transmission efficiency for the distance between the transmitter and the receiver.

The characteristic analysis of contact-less Power supply by 3D finite element method

  • Park, Han-Seok;Cho, Yun-Hyun;Jung, Hong-Sub;Woo, Kyung-il;Kim, Kyung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.145-151
    • /
    • 2004
  • This paper proposes the calculation method of magnetic coupling coefficient of contact-less power supply by the 3D finite element method with a variation of the secondary core position. The primary, secondary self and leakage inductances and the capacitances of a resonant circuit are calculated by the finite element analysis results. The magnetic coupling coefficients are obtained also. The power factors are obtained by simulation for the magnetic coupling coefficients and compared.

Magnetic Resonant Coupling Based Wireless Power Transfer System with In-Band Communication

  • Kim, Sun-Hee;Lim, Yong-Seok;Lee, Seung-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.562-568
    • /
    • 2013
  • This paper presents a design of a wireless power transfer system based on magnetic resonant coupling technology with in-band wireless communication. To increase the transmission distance and compensate for the change in the effective capacitance due to the varying distance, the proposed system used a loop antenna with a selectable capacitor array. Because the increased transmission distance enables multiple charging, we added a communication protocol operated at the same frequency band to manage a network and control power circuits. In order to achieve the efficient bandwidth in both power transfer mode and communication mode, the S-parameters of the loop antennas are adjusted by switching a series resistor. Our test results showed that the loop antenna achieved a high Q factor in power transfer mode and enough passband in communication mode.

Characteristic Analysis of Contactless Energy Transmission System using 3D Finite Element Method (3차원 유한요소법을 이용한 비접촉 전력 전달 장치 특성 해석)

  • Woo Kyung-Il;Park Han-Seok;Cho Yun-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.22-26
    • /
    • 2005
  • This paper proposes the calculation method of magnetic coupling coefficient of the contactless energy transmission system by 3D finite element method with a variation of the secondary core positions. The primary, secondary self and leakage inductances and the capacitances of a resonant circuit are calculated by the finite element analysis results. From these values, the magnetic coupling coefficients are obtained. The secondary voltages and currents according to the secondary core positions are calculated by using the resonant circuit and compared.

A Study on the Effect of Resonant Coil Size and Load Resistance on the Transmission Efficiency of Magnetic Resonance Wireless Power Transfer System (공진 코일의 크기와 부하 저항이 자계 공명 무선 전력 전송 장치의 전달 효율에 주는 영향에 관한 연구)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the wireless power transfer system using the magnetic resonance was designed and the effect of resonant coil radius and load resistance to this system was analyzed by the circuit analysis method. As a result, the calculated transmitted-power is similar to measured one, and the coil size has a small effect to the coupling coefficients in the resonant frequency band. In addition, the fact that the calculated transmitted-power according to the source frequency is similar to measured one confirms that the circuit analysis methode in this paper is valid. The input side transmission efficiency ${\eta}_i$ including only the loss in the power transfer circuit is almost 90[%] with the large coil in the 10[cm] transfer distance, and 65[%] with the small coil in 1[cm]. The source side transmission efficiency ${\eta}_s$ is 30~40[%] at both coil when load resistance below 4.7[${\Omega}$] has been connected. Considering that the maximum ${\eta}_s$ is 50[%], this is valid in the practical applications.

Wireless Power Transmission using Electromagnetic Inductive Coupling and LC Resonant (자기유도방식과 LC공진을 이용한 무선전력전송기기)

  • Lee, Seung-Hwan;Kimm, Hyoen-Min;Kim, Hee-Je;Kim, Su-Weon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Wireless power transmission introduced by Tesla has instrumented by many scientists of the world. This technique first was utilized as wireless communications such as radio in long range transmission. And contactless transmission using inductive property was used on white goods. In 2007, MIT' lab introduced that new wireless power transmission by magnetic resonance which has about 50% efficiency and 2M transmission distances, it was a chance to refocus a new possibility of wireless power transmission. In this paper, using LC coupling compensate the short distances of contactless transmission, this simple method could transmit about 30cm distances. Using this approach, it can be solved the short transmission distances, a drawback of Electromagnetic inductive coupling method.