• Title/Summary/Keyword: magnetic resonance imaging measurement

Search Result 151, Processing Time 0.035 seconds

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

Use of magnetic resonance imaging for evaluation of therapeutic response in breast cancer-related lymphedema: A systematic review

  • Forte, Antonio Jorge;Boczar, Daniel;Kassis, Salam;Huayllani, Maria T.;McLaughlin, Sarah A.
    • Archives of Plastic Surgery
    • /
    • v.47 no.4
    • /
    • pp.305-309
    • /
    • 2020
  • Breast cancer treatment-related lymphedema (BCRL) is a common comorbidity in breast cancer survivors. Although magnetic resonance imaging (MRI) is widely used to evaluate therapeutic response of patients with various medical conditions, it is not routinely used to evaluate lymphedema patients. We conducted a systematic review of the literature to identify studies on the use of MRI to evaluate therapy for BCRL. We hypothesized that MRI could provide information otherwise not possible through other examinations. On October 21, 2019, we conducted a systematic review on the PubMed/MEDLINE and Scopus databases, without time frame or language limitations, to identify studies on the use of MRI to evaluate therapy for BCRL. We excluded studies that investigated other applications of MRI, such as lymphedema diagnosis and surgical planning. Of 63 potential articles identified with the search, three case series fulfilled the eligibility criteria. In total, 53 patients with BCRL were included and quantitatively evaluated with MRI before and after manual lymphatic drainage. Authors used MRI or MR lymphagiography to investigate factors such as lymphatic vessel cross-sectional area, tissue water relaxation time (T2), and chemical exchange saturation transfer. The only study that compared MRI measurement with standard examinations reported that MRI added information to the therapy evaluation. MRI seems to be a promising tool for quantitative measurement of therapeutic response in patients with BCRL. However, the identified studies focused on only manual lymphatic drainage and were limited by the small numbers of patients. More studies are necessary to shed light on the topic.

Determination of Optimal Scan Time for the Measurement of Downstream Metabolites in Hyperpolarized 13C MRSI

  • Lee, Hansol;Lee, Joonsung;Joe, Eunhae;Yang, Seungwook;Choi, Young-suk;Wang, Eunkyung;Song, Ho-Taek;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.212-217
    • /
    • 2015
  • Purpose: For a single time-point hyperpolarized $^{13}C$ magnetic resonance spectroscopy imaging (MRSI) of animal models, scan-time window after injecting substrates is critical in terms of signal-to-noise ratio (SNR) of downstream metabolites. Pre-scans of time-resolved magnetic resonance spectroscopy (MRS) can be performed to determine the scan-time window. In this study, based on two-site exchange model, protocol-specific simulation approaches were developed for $^{13}C$ MRSI and the optimal scan-time window was determined to maximize the SNR of downstream metabolites. Materials and Methods: The arterial input function and conversion rate constant from injected substrates (pyruvate) to downstream metabolite (lactate) were precalibrated, based on pre-scans of time-resolved MRS. MRSI was simulated using two-site exchange model with considerations of scan parameters of MRSI. Optimal scan-time window for mapping lactate was chosen from simulated lactate intensity maps. The performance was validated by multiple in vivo experiments of BALB/C nude mice with MDA-MB-231 breast tumor cells. As a comparison, MRSI were performed with other scan-time windows simply chosen from the lactate signal intensities of pre-scan time-resolved MRS. Results: The optimal scan timing for our animal models was determined by simulation, and was found to be 15 s after injection of the pyruvate. Compared to the simple approach, we observed that the lactate peak signal to noise ratio (PSNR) was increased by 230%. Conclusion: Optimal scan timing to measure downstream metabolites using hyperpolarized $^{13}C$ MRSI can be determined by the proposed protocol-specific simulation approaches.

Effects of Temperature Change on the Current Injected MRI (전류 주입 자기공명영상에 온도 변화가 미치는 영향)

  • 이수열;강현수;우응제;조민형
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.303-309
    • /
    • 2001
  • It is well known that the electrical impedance of biological tissues is very sensitive to their temperature. In this paper, we have analyzed the effects of temperature change on the phase of magnetic resonance images obtained with external current injection. It has been found that the local phase in the current injected magnetic resonance image can be changed noticeably when local temperature change appears at a part of the tissue. At the experiments with a 0.3 Tesla MRI system, we observed the local phase changes at the phantom images when the phantom temperature was varied between 25 -45$^{\circ}C$. We think that the current injection MRI technique can be used for in-vivo monitoring of the temperature inside biiological tissues if the relation between the local temperature and phase can be quantified.

  • PDF

Automated Measurement of Native T1 and Extracellular Volume Fraction in Cardiac Magnetic Resonance Imaging Using a Commercially Available Deep Learning Algorithm

  • Suyon Chang;Kyunghwa Han;Suji Lee;Young Joong Yang;Pan Ki Kim;Byoung Wook Choi;Young Joo Suh
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1251-1259
    • /
    • 2022
  • Objective: T1 mapping provides valuable information regarding cardiomyopathies. Manual drawing is time consuming and prone to subjective errors. Therefore, this study aimed to test a DL algorithm for the automated measurement of native T1 and extracellular volume (ECV) fractions in cardiac magnetic resonance (CMR) imaging with a temporally separated dataset. Materials and Methods: CMR images obtained for 95 participants (mean age ± standard deviation, 54.5 ± 15.2 years), including 36 left ventricular hypertrophy (12 hypertrophic cardiomyopathy, 12 Fabry disease, and 12 amyloidosis), 32 dilated cardiomyopathy, and 27 healthy volunteers, were included. A commercial deep learning (DL) algorithm based on 2D U-net (Myomics-T1 software, version 1.0.0) was used for the automated analysis of T1 maps. Four radiologists, as study readers, performed manual analysis. The reference standard was the consensus result of the manual analysis by two additional expert readers. The segmentation performance of the DL algorithm and the correlation and agreement between the automated measurement and the reference standard were assessed. Interobserver agreement among the four radiologists was analyzed. Results: DL successfully segmented the myocardium in 99.3% of slices in the native T1 map and 89.8% of slices in the post-T1 map with Dice similarity coefficients of 0.86 ± 0.05 and 0.74 ± 0.17, respectively. Native T1 and ECV showed strong correlation and agreement between DL and the reference: for T1, r = 0.967 (95% confidence interval [CI], 0.951-0.978) and bias of 9.5 msec (95% limits of agreement [LOA], -23.6-42.6 msec); for ECV, r = 0.987 (95% CI, 0.980-0.991) and bias of 0.7% (95% LOA, -2.8%-4.2%) on per-subject basis. Agreements between DL and each of the four radiologists were excellent (intraclass correlation coefficient [ICC] of 0.98-0.99 for both native T1 and ECV), comparable to the pairwise agreement between the radiologists (ICC of 0.97-1.00 and 0.99-1.00 for native T1 and ECV, respectively). Conclusion: The DL algorithm allowed automated T1 and ECV measurements comparable to those of radiologists.

Observation of Susceptibility Change in fMRI Using SSFP Interferometry (SSFPI) Technique (핵자기 뇌기능 영상에서 SSFPI 기법을 이용한 자화율효과의 관찰)

  • Chung, J.Y.;Chung, S.C.;Ro, Y.M.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.173-176
    • /
    • 1995
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRI (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of gradient (readout) allows us to measure precession angle $\theta$ which is in turn related to the field inhomogeneity [1-3]. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRI), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are also presented.

  • PDF

Design of A Human Model of the Moving-Actuator Type Total Artificial Heart

  • Chang, Jun-Keun;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 1997
  • A human version of Korean total artificial heart(TAM) was designed basso on the magnetic resonance imaging(MRI) data To obtain accurate measurement or human thoracic structure including the valvular sited we analyzed the dimensions of the natural heart of healthy persons and cardiomyopathy(CM) patients. The MRI findings were analyzed to measure the volume of the thoracic cavity that would be occupied by the TAM. The design upgrade of the mechanical performed was also performed with the computer aided design(CAD) system to develop a new version of Korean TAH.

  • PDF

Evaluation of Signal to Noise Ratio and Image of Magnetic Resonance Imaging (자기공명영상장치의 신호대 잡음비와 영상평가)

  • Yi, Y.;Oh, C.H.;Ahn, C.B.;Lee, H.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.169-172
    • /
    • 1996
  • In this paper, we present the evaluation of signal to noise ratio(SNR) and images of Magnetic resonance imaging system which is underdevelopement. For the evaluation of such parameters, we used two different phantoms, one for SNR and image homogeneity, and the other is for the slice thickness measurement. Further, comparison with other leading MR systems may be needed for the better image quality assessment.

  • PDF

Spontaneous Intracranial Hypotension : Clinical Presentation, Imaging Features and Treatment

  • Park, Eun-Soo;Kim, Ealmaan
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Objective : In the present study, the authors investigated the clinical and imaging features as well as the therapeutic outcomes of SIH (spontaneous intracranial hypotension) patients. Methods : A retrospective review of 12 SIH patients was carried out. The diagnostic work-up included lumbar tapping and measurement of CSF opening pressure, radioisotope cisternography, brain and spinal magnetic resonance imaging (MRI), and computed tomography (CT) myelography. Autologous epidural blood patching was performed in patients who did not respond to conservative therapies, including analgesics, steroids, hydration and rest. Results : Typical postural headache was found in 11 (91%) patients. Nine (75%) patients showed pachymeningeal enhancement on their initial T1-weighted MR images. The CSF opening pressure was less than 60 mm$H_2O$ in 9 of 11 patients. Autologous epidural blood patching was performed in 7 patients, and all of them showed good responses. Conclusion : SIH can present with various clinical presentations and neuroimaging findings. Autologous epidural blood patching is thought to be the treatment of choice for patients with SIH.